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INTRODUCTION

c o n t r i b u t o r s

Introduction to the Research for  
Institutional Money Management Supplement  

in Pensions & Investments, May 2025
Shahyar Safaee

Deputy CEO and Business Development Director
Scientific Portfolio

am delighted to introduce the latest Scientific Portfolio special issue of the EDHEC Research for Institutional 
Money Management supplement to P&I, which aims to provide institutional investors with an academic 
research perspective on the most relevant issues in the industry today.

We first look at the benefits of risk-based diversification for equity investors. Diversification benefits can 
be achieved while maintaining the level of active risk, an important feature for investors seeking to both fully 
utilize their active risk budget and manage extreme losses, and risk-based diversification is achievable without 
reducing expected long-term returns.

We then examine climate transition risks in portfolio management by introducing a model that integrates 
firm-specific ‘green’ revenues, aligned with the European taxonomy. The analysis highlights three main results: 
revenue impacts are as influential as carbon pricing in shaping transition risks; effects vary within sectors, with 
some firms benefiting under ambitious transition scenarios; and socio-economic uncertainty strongly influ-
ences loss estimates.

We examine the informational overlap between environmental, social, and governance (ESG) scores and 
ESG exclusionary screening strategies within equity portfolios. While ESG scores are widely used for integrat-
ing sustainability considerations in portfolio management, they may not fully align with exclusion criteria tar-
geting companies engaged in controversial activities or behavior. By comparing the results of both approaches 
on a set of 417 indexes, the analysis reveals that reliance on ESG scores alone omits a substantial proportion 
of companies that fail to meet “do no harm” criteria.

Exclusion/negative screening is the most popular methodology used to integrate ESG criteria into invest-
ment strategies. We examine the impact of exclusion policies on the financial risks of 493 indexes from Devel-
oped Europe and the US. To address varying ESG criteria, we built three screens: one based on consensual 
criteria among asset owners, another incorporating additional climate criteria, and a third eliminating com-
panies negatively impacting any United Nations sustainable development goal. The first two screens show 
limited impact on index risks, especially when using optimized reallocation.

Finally, understanding the drivers influencing greenhouse gas emissions in financial portfolios is crucial for 
constructing and monitoring climate investment strategies. We compare existing frameworks for identifying 
the drivers of portfolio decarbonization, exploring key drivers and methods to isolate their effects. Building 
on this review, a flexible three-step model is formalized to integrate these drivers, and five specific models are 
developed to address climate-related questions.

We hope that the articles in the supplement will prove useful, informative, and insightful. We wish you an 
enjoyable read and extend our warmest thanks to P&I for their collaboration on the supplement.
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INTRODUCTION
The benefits of diversification for managing risk 

have been known since the 18th century (Bernoulli, 
1738). At its core, diversification is a risk mitigation 
mechanism consisting in spreading capital across 
different investments to avoid the co-occurrence of 
losses. In equity portfolios, there are essentially two 
approaches to diversification. The first relies on the dis-
tribution of weights, either at the stock or sector level 
(e.g., (Kacperczyk, Sialm, and Zheng, 2005; Brands, 
Brown, and Gallagher, 2005)). The second focuses on 
the diversification of risks (e.g., Meucci, 2009).

Despite its theoretical appeal for portfolio construc-
tion (Asness, Frazzini, and Pedersen, 2012; Bhansali 
et al., 2012), the impact of risk-based diversification on 
portfolio performance and extreme risk remains under-
explored. This gap arises partly because the concepts 
of diversification and risk are often amalgamated due 
to the role that correlation plays in connecting both 
notions. However, risk and diversification are not the 
same: portfolios with similar risk levels can exhibit dif-
ferent levels of diversification, influencing performance 
and vulnerability to extreme losses.

We address this gap by analyzing how holdings- 
based and risk-based active diversification (i.e., in 
excess of a benchmark) affect equity portfolios in terms 
of active risk and extreme risk, as measured by the 
expected shortfall (CVaR), and performance expecta-
tions. Beyond providing an accurate empirical analysis 
using a large sample of US equity funds, we employ a 
novel approach based on the generation of portfolios 
with identical risk levels, so-called iso-risk portfolios, 
to isolate diversification effects while controlling for 
risk and holdings concentration. This approach allows 
deeper insights than would normally be possible using 
the available empirical sample alone.

Our research highlights the following three key 
points:
•	 Empirical Analysis: We find that active2 funds–

defined as funds materially deviating from the 
market cap-weighted benchmark–concentrate risks 
in a few factors, typically Size and Value, and that 

return data. Funds included in the sample are active, 
meaning they meaningfully depart from the benchmark 
(minimum tracking error of 2%), and have a model R2 
of at least 0.80, to guarantee reliability of the statistics 
derived from the risk model.

RISK FACTOR EXPOSURES AND EXTREME RISK
Risk-based diversification relies on a risk model. 

We employ the (Fama and French, 2015) 5-factor 
model (Market excess return, Size, Value, Profitabil-
ity and Investment) plus the Momentum from Carhart 
(1997) and the betting against beta factor (BAB) from 
Frazzini and Pedersen (2014), henceforth referred to 
as Volatility.3 Factor loadings are estimated using five 
years of historical data (Jan 2019–Dec 2023), and the 
market factor serves as the benchmark for active returns 
and risks.

Active extreme risk is measured as the 95% active 
conditional Value-at-Risk (CVaR) based on daily returns. 
To maintain consistency across instruments, we use 
model-implied returns and apply the Cornish-Fisher 
expansion methodology from Mark and Vaucher (2023), 
which provides more robust and reliable estimates 
compared to historical CVaR (Pritsker, 2006). Instrument 
betas and extreme risk estimates are calculated using 
daily data from the same five-year period. Robustness 
tests show that results remain unchanged extending the 
estimation window to 20 years.

DIVERSIFICATION MEASURES
Portfolio theory often considers a portfolio well 

diversified if it achieves the highest reward per unit of 
risk. However, since expected returns are difficult to 
estimate (Merton, 1980), portfolio managers prefer to 
focus on more heuristic definitions that capture the idea 
of spreading risk across different assets (Martellini and 
Milhau, 2018). In line with this approach, the analysis 
employs four diversification measures: two based on 
holdings and two on risk.
•	 Holding-Based Diversification One of the most 

classical concentration measures is the con-
centration of weights. It is measured using the  

extreme risk (95% CVaR) is mitigated when increas-
ing diversification of risks or sector holdings but is 
not impacted by the level of exposure-based or 
stock-level concentration. These effects are robust 
to alternative definitions of extreme risk, such as 
maximum drawdown. We also find decreasing mar-
ginal effects: while diversifying a portfolio’s risk can 
reduce by as much as 20% the probability of having 
a large CVaR for concentrated funds, the effect pla-
teaus and is negligible for already well-diversified 
funds. Hence, investors do not need to fully maxi-
mize diversification to reap its full benefits in terms 
of reduction of bad performance surprises.

•	 Iso-Risk Portfolios: Our unique dataset of iso-risk 
portfolios demonstrates that risk-based diversifica-
tion allows a risk budget to be managed efficiently: 
its benefits can be achieved regardless of the start-
ing risk level, suggesting that investors can diversify 
without necessarily reducing their target active risk. 
While controlling for the effect of risk and holdings 
concentration, we find that risk-based diversification 
has stronger mitigating effects than sector-based 
measures. The marginal impact depends on current 
diversification levels, not risk levels.

•	 Performance Impact: Diversification, whether risk- 
or sector-based, does not significantly affect long-
term expected returns. This result, combined with 
the previous insight, i.e., additional diversification 
does not require the risk level to change, makes 
diversification a powerful and complementary tool 
for active managers with discretionary views on 
future returns.

DATA AND METHODOLOGY
We begin with a cross-sectional analysis of 476 U.S. 

equity mutual funds from the Morningstar database, 
covering January 2019 to December 2023. These funds 
collectively invest in over 1,900 individual stocks, offer-
ing a wide variety of risk profiles and compositions. 
To further enhance the analysis, in a second step we 
generate 39,400 randomized portfolios using the iso-
risk methodology described later starting from daily 

Mitigating Tail Risks without Sacrifice: 
Empirical Evidence of  Risk-Based 

Diversification’s Benefits for Equity Investors
Matteo Bagnara

Quantitative Researcher
Scientific Portfolio

matteo.bagnara@scientificportfolio.com

Benoit Vaucher
Head of Research
Scientific Portfolio

benoit.vaucher@scientificportfolio.com

•	 Diversification, especially when based on risk contributions, reduces the likelihood of extreme losses, making it a practical tool for risk management.

•	 The marginal benefits of diversification are diminishing: adding more diversification to an already diversified portfolio does not significantly improve 
extreme risks.

•	 Diversification benefits can be achieved while maintaining the level of active risk,1 an important feature for investors seeking to both fully utilize their 
active risk budget and manage extreme losses.

•	 Risk-based diversification is achievable without reducing expected long-term returns.

1 Also known as tracking error and defined as the standard deviation of returns relative to a given benchmark. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5095454.
2 We focus on active portfolios; hence the discussion involves active diversification and risk measures.
3 We thank AQR Capital Management for BAB data (https://www.aqr.com/Insights/Datasets/Betting-Against-Beta-Equity-Factors-Monthly) and Kenneth French for the other risk factors 
(https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).

mailto:matteo.bagnara@scientificportfolio.com
mailto:benoit.vaucher@scientificportfolio.com
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5095454
https://www.aqr.com/Insights/Datasets/Betting-Against-Beta-Equity-Factors-Monthly
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Herfindahl–Hirschman index (HHI), which corre-
sponds to the sum of squared portfolio weights 
using either stock-level and sector-level holdings 
(e.g., Brands, Brown, and Gallagher, 2005). When 
employed to assess active diversification, weight 
concentration becomes cumbersome to interpret 
for small active weights. To address this issue, we 
define the active holding diversification (AHD) and 
active sector diversification (ASD) as the inverse 
active HHI (with active stock and sector weights, 
respectively) normalized by the squared sum of 
their active capital, as explained in Bagnara and 
Vaucher (2024).

•	 Risk-Based Diversification is measured using active 
factor diversification (AFD) and active risk diversi-
fication (ARD). AFD is a concentration measure 
that uses active risk exposures (betas) instead of 
weights. On the other hand, the ARD uses active 
risk factor contributions summing to the portfolio’s 
active risk (Bagnara and Vaucher, 2024). Portfolios 
with well-distributed exposures across risk drivers 
exhibit higher AFD, with AFD = 7 indicating max-
imum factor diversification (equal exposure across 
all seven factors). Analogously, ARD reaches its 
maximum of 7, when total active risk is evenly dis-
tributed among risk factors.4 ARD captures the 
effective number of active bets, where diversifica-
tion is evaluated in terms of risk contributions rather 
than just exposures.

In the last part of the analysis, we use the Factor 
Intensity (FI), which represents total active exposure to 
risk factors relative to the market. FI is proportional to 
the funds’ performance expectations, when assuming 
that in the long run the risk premium of all factors is the 
same, as we explain later.

ISO-RISK PORTFOLIO ROTATIONS
Statistical studies on the relationship between port-

folio characteristics and diversification often face lim-
itations due to small sample sizes. Traditional methods 
like conditional double sorts, e.g., on diversification 
and extreme risk, become impractical when empirical 
data is limited.

To overcome this, we use the iso-risk portfolio 
rotation method, which generates a large number 
of alternative portfolios with identical active risk and 
weight concentration as existing stock portfolios. This 
approach allows us to significantly expand the sam-
ple and analyze the relationship between diversifica-
tion and performance for any given level of risk. For 
a detailed explanation of this technique and its imple-
mentation, we refer interested readers to Vaucher and 
Bagnara (2024b).

LONG-TERM PERFORMANCE
Imposing diversification on an otherwise uncon-

strained portfolio may give rise to a cost in terms of per-
formance, as it may force the active portfolio manager 
to reallocate capital from stocks where she has an infor-
mational advantage to a broader set of investments. 
In other words, increasing diversification reduces the 
transfer coefficient and with this also the expected 
value added by active management. Estimating this 
cost empirically is challenging, as it requires a number 
of assumptions about investors’ priors and beliefs.

Our expanded portfolio sample with controlled 
risk levels offers a unique opportunity to examine the 
relationship between diversification and performance. 
Unlike much of the existing literature, our approach 

does not rely on historical performance. Instead, we 
simply assume that over the long term, all risk premia 
are expected to converge to the same value. Under 
this assumption, which provides an agnostic perspec-
tive on factor rewards, and no arbitrage, the long-term 
expected return of an asset in a linear factor model is its 
factor intensity FI scaled by the expected risk premium. 
Consequently, we focus on the cross-sectional variation 
in FI to explore the relationship between diversification 
and long-term performance, independently of the his-
torical sample.5 This agnostic approach is particularly 
valuable, as previous studies on risk-based diversifica-
tion and performance often yield sample-dependent 
results (Chaves et al., 2011).

RESULTS

Stylized facts about diversification
Table 1 presents descriptive statistics for the diversi-

fication measures, along with active annualized risk (TE) 
and active daily 95% CVaR, which assesses tail risk at 
the daily frequency. CVaR, referred to as extreme risk, 
is always measured relative to the benchmark and in 
absolute values, with higher levels indicating greater 
potential losses.

The median ARD is 2.04, indicating that most funds 
spread active risk across only two factors. Only about 
20% achieve ARD above 3. The median AFD is even 
lower at 1, with just 10% of funds diversifying across 
more than two factors. These findings reflect the 
under-diversification documented in Uppal and Wang 
(2003) and Han et al. (2024). Holdings-based measures 
(AHD, ASD) show less skewed distributions, with the 
average fund actively investing in 117 stocks and about 
5 sectors.

To identify in which few factors funds are mostly 
concentrated, we compare the top and bottom 20% of 
funds for each measure. ARD- and ASD-concentrated 
funds have higher exposures to Size (average about 
0.45 and 0.25) and Value (about 0.1 for both) compared 
to the most diversified group, which shows near-zero 
exposures on average. In contrast, funds ranked by 
AFD and AHD display higher exposures to Size and 
Value as diversification increases.

DIVERSIFICATION AND EXTREME RISK
As a risk-mitigating tool, diversification aims to 

reduce large losses. To test this hypothesis, we regress 
CVaR on various diversification measures according to 
the following specifications, using standardized data for 
comparability:
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ASD
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(1)

Comparing several specifications with each other 
allows us to verify the stability of the association 
between variables controlling for other diversification 
metrics. Results are reported in Table 2.

ARD strongly reduces tail risk: an increase of one 
standard deviation (0.89) leads to a reduction of 0.45 
standard deviations of CVaR.6 Notably, ARD alone 
explains about 20% of the variation in CVaR, highlight-
ing the strong relationship between extreme risk and 
diversification. Sector-based diversification has a simi-
lar effect, with a coefficient of –0.42. Other measures 

4 An alternative measure of risk-based diversification it the effective number of bets, or ENB (Meucci, 2009; Martellini and Milhau, 2018).
5 Alternatively, one can assume that in the long run risk factors share the same reward-to-risk ratio (Sharpe Ratio, SR) instead of the same risk premia. In this case, the expected return of 
an asset equals this common SR times a weighted factor intensity, where weights are determined by the relation between the volatilities of risk factors. Results under this assumption that 
analyze the impact of diversification on SR instead of expected returns, are practically unchanged, and are available upon request.
6 Herzog et al. (2023) find that ARD helps stabilize active risk by reducing the standard deviation of tracking error. Since CVaR can be seen as a function of high-order moments such as 
kurtosis (e.g., Mark and Vaucher, 2023), our results confirm and generalize what they previously documented.

Diversification measures: descriptives
Note: Descriptive statistics for active risk diversification (ARD), active factor diversification (AFD), 
(normalized) active holding diversification (AHD) and (normalized) active sector diversification (ASD), 
active annualized risk (TE) and active daily CVaR in %. US funds, 2019–2023.

ARD AFD AHD ASD TE (%) CVaR (%)

N 476 476 476 476 476 476

mean 2.28 1.09 116.68 4.52 7.05 1.03

std 0.89 0.76 43.37 1.07 3.19 0.46

min 0.83 0 20.97 3.12 2 0.28

1% 0.98 0.01 30.3 3.16 2.08 0.31

5% 1.17 0.05 54.59 3.38 2.41 0.36

10% 1.32 0.12 65.59 3.46 3.01 0.46

25% 1.64 0.4 85.5 3.74 4.73 0.71

50% 2.04 1 110.4 4.13 6.61 0.97

75% 2.85 1.73 142.74 5.06 9.17 1.33

90% 3.62 2.11 188 6.32 11.72 1.69

95% 3.95 2.29 196.66 6.67 12.88 1.85

99% 4.65 2.86 209.57 7.55 14.49 2.08

max 5.02 3.27 218.47 7.8 15.63 2.25

TABLE 1
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of diversification, on the other hand, have a positive 
and significant coefficient, meaning that they may even 
induce an increase in extreme risk, which means that 
diversifying weights or betas does not necessarily lead 
to a diversification of risks.

NON-LINEAR MARGINAL EFFECTS
The previous section established a positive linear 

relationship between diversification and the reduction 
of extreme risk. However, economic intuition suggests 
the relationship may not be entirely linear. To explore 
this, we use Probit models that allow us to estimate 
the probability of a high level of losses for any given 
level of diversification. To do so we introduce a binary 
variable, high_CVaR, which takes a value of 1 when 
CVaR exceeds the 75th percentile and zero otherwise, 
and define its probability using the following models:

	

Prob high CVaR ARD
Prob high CVaR ASD

i

i

( _ ) ( )
( _ ) ( )

� � �
� � �

1
1

1

1

�
�
� �
� �

PProb high CVaR ARD ASD
AFD AHD

i i

i i

( _ ) (
)

� � � �
� �

1 1 2

3 4

� � � �
� � 	

(2)

where Φ(.) is the standard normal cumulative distribu-
tion function.

We find that both ARD and ASD’s mitigating effects 
on extreme losses persist and are strongly significant 
when considered alone, but, importantly, the effect of 
ASD is not significant anymore once we control for risk 
diversification. Non-linear models like Probit measure 
diversification effects depending on the diversification 
levels, instead of forcing linearity and thus assuming the 
same effect across the entire cross-section. This refined 
analysis reveals that only ARD systematically reduces 
the probability of incurring large extreme losses, while 
ASD does not.

This idea is better conveyed through the Probit 
marginal effects, which quantify the reduction in the 
probability of high CVaR in classical probability terms 
(Greene, 2012), depending on the starting diversifica-
tion level. We plot such marginal effects in Figure 1, 
where variables are displayed in their original scale.

ARD has a strong nonlinear impact. When ARD is 
low, improving it by one point diminishes the probabil-
ity of large tail risk by 20%; at the median ARD (2.04), 
the probability decreases by 15%; for high ARD levels, a 
similar change reduces the chance by only 2%.

Thus, diversifying reduces extreme losses, but with 
diminishing marginal effects: while a good level of risk 
diversification is desirable, maximizing diversification 
may not significantly improve risks beyond certain lev-
els. Conversely, ASD (right panel) shows no significant 
impact after accounting for ARD. This shows that while 
improving ARD effectively lowers the likelihood of 
extreme losses, other diversification metrics, including 
ASD, provide limited additional benefit when ARD does 
not change accordingly.

ROBUSTNESS TESTS: LONG-TERM CVAR 
AND MAXIMUM DRAWDOWN

We conduct two robustness tests to validate the sta-
bility of our findings.7

•	 Longer-Horizon Active Extreme Risk We extended 
the analysis to a 20-year period (2004–2023) using 
model-implied returns based on each fund’s betas 
and risk factor returns, which have longer data his-
tories.8 Calculating the 95% CVaR for this period, 
we repeat the linear regressions and Probit models. 
Results remain consistent even when computed on 
longer periods: ARD and ASD significantly impact 
CVaR in linear models (coefficients are –0.26 and 
–0.15, respectively), and Probit models confirm 
ARD as the sole metric robustly associated with 
reduced active tail risk.

•	 Alternative Extreme Risk Measure: Maximum 
Drawdown (MDD) While CVaR is widely accepted 
and often used for regulatory purposes, another 
dimension of extreme risk is captured by the max-
imum drawdown (MDD), which is the maximum 
cumulative loss a portfolio experiences before 
reverting back to its value over a certain period. 
We estimated the maximum drawdown using 
model returns from the period 2019–2023 and use 
it as independent variable in the previous models. 
Regression results align with those for CVaR: higher 
ARD and ASD levels correspond to lower MDD 
(coefficients are –0.17 and –0.09), though ASD’s 
significance weakens when all metrics are included. 

Probit results again highlight ARD’s prominent role 
in reducing the probability of high extreme losses, 
confirming the robustness of its mitigating capabili-
ties across risk definitions.

ISO-RISK ANALYSIS
Analyzing the link between tail risk and risk-based 

diversification is challenging due to the intertwined 
nature of risk and extreme risk. Traditional statistical 
techniques require sample sizes that are currently not 
available, which makes it difficult to examine extreme 
risk while controlling for risk.

To address this, we develop a technique called iso-
risk rotations that generates random portfolios with 

Multivariate analysis
Note: Multivariate analysis described in (1). Star (*) indicate statistical significance at the 10%, 5% and 
1% level, respectively. Standard errors are in brackets. Data is standardized.

CVaR I CVaR II CVaR III CVaR IV CVaR V

Intercept 0 0 0 0 0

–0.041 –0.041 –0.043 –0.042 –0.036

ARD –0.447* –0.214*

–0.041 –0.043

AFD 0.446* 0.303*

–0.041 –0.038

AHD 0.367* 0.227*

–0.043 –0.038

ASD –0.415* –0.192*

–0.042 –0.042

R2 Adj. 0.198 0.197 0.133 0.171 0.389

N 476 476 476 476 476

TABLE 2

7 Full tabulated results are available upon request.
8 Vaucher and Bagnara (2024a) demonstrate the validity of this approach when model fit is adequate. Our sample satisfies this criterion since selected funds have an R2 of at least 0.80.

Probit marginal effects for high CVaR
Note: Probit marginal effects for ARD and ASD based on the last specification in (2). In each panel, vari-
ables different than that represented on the x-axis are kept fixed at their mean. Shaded areas denote 
confidence intervals.

FIGURE 1
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fixed risk and varying diversification levels.9 Simply 
put, these transformations take an existing portfolio 
to produce a new portfolio with random weights but 
precisely the same level of risk and holdings concentra-
tion. With this technique, we can generate an unprece-
dented sample of portfolios with fixed levels of risk but 
different levels of diversification.

Selecting 197 funds with different risk levels from 
the empirical sample, we perform 200 iso-risk rotations 
on each fund to obtain 39,400 synthetic portfolios 
across 197 controlled levels of risk–an unprecedented 
dataset for our analysis. In this expanded sample, 
diversification metrics exhibit much greater variation 
than in the empirical data: ARD ranges from 0.8 to 
6.1, ASD from 2.58 to 9.47, and AFD reaches almost 4. 
Meanwhile, active risk and CVaR distributions remain 
similar to the empirical sample. This approach is 
therefore able to generate synthetic portfolios with 
diverse diversification characteristics, allowing for a 
more precise assessment of diversification effects on 
extreme risk.

Diversification vs. CVaR controlling risk levels
The iso-risk rotation approach allows us to analyze 

the relationship between diversification and CVaR while 
holding active risk constant. To achieve this, the gen-
erated portfolios are grouped into 49 equally spaced 
active risk intervals. Here active risk variations are lim-
ited to only 20–30 bps within each group, whereas 
diversification metrics vary more considerably.10 Within 
each group, we run the previous regressions models:
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(3)

where j = 1, …, 49 denotes the risk group and i = 1, …,  
Nj denotes each portfolio belonging to the risk 
group j. Within each risk group, variables are stan-
dardised. The first two models assess the individ-
ual effects of ARD and ASD on CVaR, while the third 
controls for all diversification metrics, thus identifying 
their independent impact, at the same time leaving 
the active risk unchanged. Figure 2 visualizes the coef-
ficients of ARD and ASD from the third model across 
active risk levels.

Two key observations emerge. First, both risk-
based and sector-based diversification reduce CVaR 
across all risk levels: the average coefficients for ARD 
and ASD are very similar when taken individually (–0.24 
and –0.28), but ARD is more effective than ASD at mit-
igating extreme losses when controlling for all metrics 
(coefficients are –0.20 and –0.09, respectively) whatever 
the risk level. In other terms, risk diversification reduces 
extreme losses. Importantly, these benefits of diversi-
fication are observable and achievable at every active 
risk level: there are no clear regions where coefficients 
are systematically positive for ARD or ASD in the figure. 
The fact that increasing diversification does not require 
day-to-day risk to be reduced systematically is particu-
larly appealing for investors adhering to strict risk bud-
gets and wanting to fully consume their budget while 
mitigating extreme risks. We find similar results with 
alternative calculations of active risk groups.

Expected performance
We conclude by addressing the impact of diver-

sification on expected performance. As we have 

explained before, we use the portfolios’ active fac-
tor intensity (FI) as a robust estimate of long-term 
expected returns. Because risk has an important 
impact on performance, we used our enlarged sam-
ple, and thus we can investigate the relationship 
between robust long-term returns and diversification 
while neutralizing the effect of risk. To do so, we used 
the same 49 active risk groups obtained with iso-risk 
portfolios and estimated the relationship between 
diversification using the models specified in (3) with 
FI as the left-hand side variable. Figure 3 shows the 

coefficients for ARD and ASD resulting from this exer-
cise across the risk groups.

The average coefficients for ARD and ASD are gen-
erally small and statistically insignificant, suggesting 
no material relationship between diversification and 
expected returns. This shows that at every active risk 
level, more diversification is not linked to a reduction 
in expected performance.11 In practical terms, this also 
means that adding diversification does not require the 
active risk level to be changed to maintain long-term 
expected returns.

Impact of  diversification on expected returns controlling for active risk level
Note: Regression coefficients of ARD and ASD according to the last specification in (3) across all 49 active 
risk groups, where FI is used as left-hand variable. Dotted lines represent the average coefficient for each 
diversification metric.

FIGURE 3

Impact of  diversification on CvaR controlling for active risk level
Note: Regression coefficients of ARD and ASD according to the last specification in (3) across all 49 active 
risk groups. Dotted lines represent the average coefficients.

FIGURE 2

9 Iso-risk rotations maintain non-active holdings-based concentration constant, but not AHD.
10 Notably, we find that the range of achievable diversification narrows as active risk increases: for example, ARD can vary by up to 2 units for low-risk funds (2% active risk) but by less 
than 1 unit for high-risk funds (15% active risk).
11 Since the risk groups are built so that the active risk is kept approximately constant, the average SR per group is proportional to the average FI up to a constant. Hence, the results 
shown here hold also for portfolio SR and not only for expected performance. Results available upon request.
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CONCLUSION
The key takeaways for investors resulting from our 

analysis are the following:
•	 Benefits of Risk-Based Diversification. Diversifi-

cation reduces the likelihood of extreme losses but 
in practice managing extreme risk is more effec-
tive with risk-based diversification than traditional 
holdings-based measures, including sector-based 
diversification, as its effect is robust to a variety of 
statistical tests.

•	 Diminishing Marginal Benefits. Adding more 
diversification to an already diversified portfolio 
does not significantly improve extreme risks. Being 
“diversified enough” is sufficient.

•	 Effective Risk Mitigation. Diversification reduces 
extreme losses across risk levels and can be 
achieved without having to underutilize a target 
day-to-day risk budget. For structurally higher-risk 
portfolios, diversification is a good substitute for 
de-risking.

•	 Minimal Impact on Performance. Adding diversi-
fication has no significant effect on expected per-
formance. This is an important feature for active 
managers who wish to reflect their discretionary 
views on future returns in the allocation process.

•	 Bottom Line: Risk-based diversification is a pow-
erful, reliable tool for investors looking to reduce 
extreme risk and enhance portfolio resilience with-
out underutilizing their risk budget or compromis-
ing performance.
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This article (a summary of a recent research paper12) addresses climate transition risks in portfolio management by introducing a model that integrates 
firm-specific ‘green’ revenues, aligned with the European taxonomy, with economic and energy variables from adverse transition scenarios. Unlike short-
term climate stress tests focusing on carbon pricing, our model incorporates operational cost and revenue transmission channels to derive a conditional 
transition loss metric. Applied to 1,287 listed companies, our analysis highlights significant portfolio equity risks with aggregate portfolio impacts ranging 
from 0.5–6% and sector-specific losses as high as 10–60% in vulnerable sectors such as Utilities. Integrating such forward-looking scenario analysis results 
with backward-looking financial factor models may help capture shifts in investor perceptions and enhance equity portfolio risk management.

•	 Climate transition risks present significant challenges for portfolio management. Short-term climate stress tests focus predominantly on carbon pricing 
and operational costs, often neglecting longer-term revenue impacts from demand changes.

•	 This paper introduces a model combining firm-specific ‘green’ revenues, aligned with the European taxonomy, with economic and energy variables 
from adverse transition scenarios to calculate a conditional transition loss metric, capturing the interplay between revenue and cost dynamics.

•	 Applied to the 1,287 MSCI World Index constituents, the analysis highlights three main results: revenue impacts are as inf luential as carbon pricing in 
shaping transition risks; effects vary within sectors, with some firms benefiting under ambitious transition scenarios; and socio-economic uncertainty 
strongly inf luences loss estimates.

INTRODUCTION
Climate-related transition risks are increasingly cen-

tral to equity portfolio management. These risks pose 
potential disruptions while offering opportunities for 
firms aligned with climate goals. For equity portfolio 
managers, transition risks affect valuations, sectoral 
dynamics and risk-return profiles. Understanding and 
quantifying these risks is crucial for portfolio alloca-
tion. However, the pricing of transition risks in financial 
markets remains inconsistent.

Some research indicates firms with higher green-
house gas emissions trade at a discount due to a carbon 
risk premium (Bolton and Kacperczyk, 2023). Others 
suggest green stocks have outperformed brown stocks, 
indicating transition risks are not uniformly priced 
(Bernardini et al., 2021; Bauer et al., 2022). Differences 
between realized and expected returns, as well as struc-
tural barriers like inadequate risk models and short-
term investment horizons, contribute to this uncertainty 
(Thomä and Chenet, 2017; Campiglio et al., 2023).

Long-term scenario analysis has emerged as a crit-
ical tool for assessing transition risks. Unlike short-term 
climate stress tests focused on carbon pricing and oper-
ational cost impacts, scenario-based methodologies 
incorporate broader economic and energy transforma-
tions. Regulatory bodies like the Network for Greening 
the Financial System (NGFS) have advanced integrated 
assessment models to capture direct and indirect effects. 
However, these approaches often lack firm-level granular-
ity, making it difficult to differentiate risks within sectors.

This paper introduces a model integrating firm- 
specific revenue data, particularly “green” revenues 
aligned with the European taxonomy, alongside carbon 
intensity metrics. By linking firm revenue depen-
dencies to sectoral variables from NGFS scenarios, 
the model captures both revenue and operational cost 

transmission channels, offering a more comprehensive 
transition risk framework. Additionally, it evaluates 
financial outcome sensitivity to scenario assumptions, 
time horizons, and model uncertainties.

Applying this approach to 1,287 MSCI World 
Index companies, the analysis finds revenue transmis-
sion effects as significant as carbon pricing in shaping 
transition risks. It highlights substantial intra-sectoral 
variation, with some firms benefiting while others face 
losses. Scenario and time horizon assumptions prove 
crucial, whereas the choice of an integrated assessment 
model has a more limited impact.

The rest of the paper is structured as follows: 
Section 1 introduces the model and data, Section 2 
examines revenue transmission, sectoral differences, 
and scenario sensitivity, and Section 3 discusses find-
ings in context, offering recommendations for future 
research and risk management.

MODEL AND DATA
Equity asset prices can fluctuate due to shifts in inves-

tors’ perceptions of the firm’s future expected cash flows 
or changes in the discount rate applied to the present 
value of those cash flows (Pástor et al., 2021). Transition 
risk drivers can influence these cash flows, potentially 
harming ‘brown’ firms or benefiting ‘green’ firms. This 
section introduces a model and its calibration for the con-
ditional transition loss in equity value caused by changes 
in expectations surrounding climate transition scenarios, 
focusing on the impact of changes in expected cash flows.

A discounted-cash flow model for transition risk 
channels

The analysis uses a discounted cash flow model 
that captures two key transmission channels. The first 
channel, revenue, varies across firms based on activity 

contributions, with each segment driven by a correspond-
ing scenario variable. The second channel, operating 
costs, depends on the firm’s direct emissions (Scope 1) 
intensity and the carbon price specified in the scenario.

Let CFi,t denote the cash flows of firm i at time t, 
under the expected (baseline) transition scenario. We 
assume the following cash flow structure:

	 CF Yi t i t i t, , ,( )� � � � �1 � � � �

where Yi,t represents revenue, ωi,t the carbon costs rate, 
θ the operating cost rate, τ is the tax rate, and ρ the 
(net) investments rate.13 Firm revenue, Yi,t, is the sum of 
the revenue of its activity segments, denoted by s. The 
revenue dynamic is driven by a growth factor specific to 
each activity segment:

	

Y Y
Y
Yi t

S

i s
s t

s
, , ,

,

,
� �� 0

0

where Yi,s,0 is the initial sales of product s for stock i, and 
Y
Y

s t

s

,

,0
 is the growth factor of the product’s demand over 

time, determined by the scenario.
The carbon cost rate is modelled as the product of 

a firm’s direct emissions (Scope 1) and the scenario’s 
carbon price, excluding indirect emissions (Scope 2 
and 3) from direct cost calculations. This assumes their 
impact is already factored in at the sector level via the 
integrated assessment model and reflected in firm cash 
flows through the revenue channel.

Finally, to avoid negative cash flows, the carbon 
cost rate is capped such that the sum of the carbon 
cost rate, tax rate, operating cost rate, and investment 
rate does not exceed 1:

	 � � � � �i t i t, ( , )� � � � �min � 1

12 Lorans, T., Priol, J., & Bouchet, V. (2025). Beyond Carbon Price: A Scenario-Based Quantification of Portfolio Financial Loss from Climate Transition Risks. Scientific Portfolio Publication. 
https://scientificportfolio.com/pdfs/2025-01-beyond-carbon-price-scenario-based-loss-climate-transition-risks.pdf.
13 Every rate is expressed as a fraction of the sales. It allows us to factorise the sales in the cash-flows formula.

mailto:vincent.bouchet@scientificportfolio.com
mailto:thomas.lorans@scientificportfolio.com
mailto:julien.priol@scientificportfolio.com
https://scientificportfolio.com/pdfs/2025-01-beyond-carbon-price-scenario-based-loss-climate-transition-risks.pdf
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where σi is the carbon intensity of the stock i and Λt is 
the carbon price.

Once the cash flows are projected between the 
reference date and the analysis horizon, they are dis-
counted by weighted average cost of capital (WACC):

	
DCF

CF
WACCi t

i t
t,

,

( )
�

�1

These discounted cash flows are summed to com-
pute the total firm value Vi:

	

V DCFi

t

T

i t�� ,

The conditional transition loss is finally computed as 
the relative change in the stock value compared to the 
value in the baseline scenario:

	
L

V
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i
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�
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�
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Decomposing the revenue and carbon cost effects 
on conditional transition loss

The revenue and operational cost transmission 
channels are interconnected. Since carbon costs are 
proportional to a firm’s carbon intensity, total operat-
ing costs depend on activity levels, which are in turn 
determined by firm revenue. To better understand the 
relative contribution of each transmission channel, this 
relationship is further analyzed. Specifically, we calcu-
late the sensitivity of DCF to changes in carbon cost 
rate ωi,t and projected sales Yi,t:
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These partial derivatives give us the sensitivity of the 
discounted-cash-flows to the carbon costs rate and sales:
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The impact on the discounted-cash-flows of the stock i 
due to the climate scenarios can thus be described as:
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where ∆Yi,t and ∆ωi,t are the differences in the projected 
sales and the carbon costs rate between the initial 
expected transition scenario and the new market expec-
tations. The total impact of the transition scenario on 
firm i’s discounted cash flows can thus be expressed as:

	
� � � �DCF DCF DCF DCFi t i t

Y
i t i t

Y
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The change in stock value due to unexpected tran-
sition concerns is:
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The loss from each factor is computed as a ratio to 
the baseline stock value:
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where Vi
baseline is the value of the stock in the initially 

expected transition scenario. The loss from net carbon 
tax is computed as the loss from carbon netted from the 
interaction term:

	 L L Li i i
Ynet� � �� � �

The total loss of the stock i can therefore be 
expressed as:

	 L L Li i
Y

i
net� � �

This decomposition captures the repricing effects 
of unexpected change in transition concerns through 
two main dimensions: the net carbon tax effect and the 
revenue effect.

Model calibration
The growth factors – specific to each activity 

segment – and the carbon price are calibrated based 
on the NGFS scenarios database.14

The Current Policies scenario serves as the reference, 
while Net Zero 2050 is the primary ‘adverse’ transition 
scenario. Certain segments, particularly climate poli-
cy-relevant sectors (Battiston et al., 2017), face height-
ened transition risks. For these, relevant NGFS scenario 
variables serve as proxies to estimate revenue growth fac-

tors (Table 1). The growth factor is defined as Y
Y

s t

s

,

,0

, where 

Ys,t is the demand of the product s at time t and Ys,0 is the 
demand of the product s at the base year (2020).

The initial revenue for each activity segment, Yi,s,0, is 
determined using the European Sustainable Taxonomy 
(Moody’s Product & Services dataset) in conjunction with 
the NACE classification.15 The Weighted-Average Cost 
of Capital (WACC), Tax Rate (τ ), Operating Costs Rate 
(θ ), and Net Investments Rate (ρ ) are calibrated with the 
global version of the Damodaran Online database,16 at 
TRBC sector level17 (Table 2).

RESULTS
Applying the model to the 1,287 largest listed 

companies worldwide18 reveals that the revenue 
transmission channel has a comparable impact to 
carbon pricing. Incorporating both channels reveals het-
erogeneous impacts within transition-sensitive sectors, 
offering additional insights beyond carbon intensity as 
a risk proxy. Lastly, the analysis examines the sensitivity 
of these findings to scenario and time horizon choices.

14 Scenarios are based on three Integrated Assessment Models (IAMs): GCAM 6.0 NGFS, MESSAGEix-GLOBIOM 1.1-M-R12 and REMIND-MAgPIE 3.2-4.6. We focus on MESSAGEix-
GLOBIOM 1.1-M-R12 model for results presentation.
15 For each stock, revenue is allocated as follows: a) percentages from Moody’s dataset are assigned to activity segments; (b) The remainder is allocated by NACE code, with unmapped 
activities ‘Other.’
16 https://pages.stern.nyu.edu/~adamodar/New_Home_Page/data.html.
17 Stocks without a TRBC sector are assigned to the Total sector, calibrated with the total market. Due to lack of data, we assign stocks from the Healthcare sector to the Total sector.
18 Constituents of the MSCI World Index.

Activity segments and scenario variables
Note: This table presents mapping between specific segment activities and corresponding NGFS scenario 
variables used to proxy revenue trend of each segment.

Activity Segment NGFS Variable Used to Calibrate the Growth Factor

Other GDP|MER|Counterfactual without damage

Fossil Fuels Electricity Secondary Energy|Electricity|Coal

Secondary Energy|Electricity|Gas

Secondary Energy|Electricity|Oil

Low Carbon Electricity Secondary Energy|Electricity|Biomass

Secondary Energy|Electricity|Geothermal

Secondary Energy|Electricity|Hydro

Secondary Energy|Electricity|Solar

Secondary Energy|Electricity|Wind

Secondary Energy|Electricity|Nuclear

Fossil Fuels Primary Energy|Coal

Primary Energy|Gas

Primary Energy|Oil

Secondary Energy|Gases

Secondary Energy|Liquids

Hydrogen Secondary Energy|Hydrogen

Alternative Transportation Final Energy|Transportation|Electricity

Final Energy|Transportation|Hydrogen

Conventional Transportation Final Energy|Transportation|Liquids

TABLE 1

https://pages.stern.nyu.edu/~adamodar/New_Home_Page/data.html
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The revenue transmission channel as a key driver
Unlike short-term assessments of carbon pricing on 

operating costs, this long-term scenario analysis accounts 
for demand shifts across activity segments. The revenue 
transmission channel has a greater aggregate impact than 
carbon pricing across most sectors, including low-emission 
industries (Healthcare, Telecoms, Technology) influenced 
by GDP trends and transition-sensitive sectors (Utilities, 
Energy, Industrials) where ‘green’ segments grow as 
‘brown’ segments decline. Overall, Utilities, Energy, Basic 
Materials19 and Industrials suffer the greatest losses, with 
Utilities facing a potential value loss of up to 58% (Table 3).

Heterogeneous impact for firms within the climate 
sensitive sectors

Transition risk scenario analyses using integrated 
assessment models provide sector-level financial impact 
assessments. However, portfolio managers must under-
stand both the sectoral and intra-sectoral dimensions of 
transition risks. Incorporating the revenue transmission 
channel alongside carbon pricing reveals significant 
heterogeneity. Unlike stress tests focused solely on car-
bon pricing, this approach highlights potential positive 
revaluations, particularly in Energy and Utilities, where 
both ‘winners’ (stocks with negative losses) and ‘losers’ 
emerge (Table 4).

A limited overlap between the carbon intensity 
and the conditional transition loss

Carbon intensity, defined as emissions relative to 
revenue or enterprise value, is often used as a proxy for 
transition risks in equity markets. While related to con-
ditional transition loss, this analysis reveals significant 
divergence due to the influence of revenue, especially 
in Utilities (Figure 1).

Sensitivity analysis to scenario, model, and horizon
Long-term scenario analysis differs from traditional 

risk management by extending the horizon to as far 
as 2050 and incorporating multiple scenarios without 
assigned probabilities. Consequentially, assessing sen-
sitivity to these parameters is crucial.

All transition scenarios result in significantly lower con-
ditional transition losses than the Net Zero 2050 scenario 
(Table 5). Aggregate losses range from 0.4% under the 
Fragmented World scenario to 6.2% under Net Zero 2050, 
illustrating the potential range of transition risk impacts.

Time horizon plays a significant role, with the con-
ditional transition loss with the conditional transition 
loss increasing from 2.5% at a 2030 horizon to 6.2% by 
2050. Despite discounting reducing long-term cash flow 
impacts, most transition risks emerge after 2030 (Table 6).

The balance between the revenue mechanism 
and the carbon price transmission channel shifts with 
the time horizon. By 2030, losses are largely driven by 
the carbon tax, but beyond 2030, revenue dynamics 
become the primary driver (Table 7).

Our results exhibit limited sensitivity to the choice 
of the integrated assessment model. For the aggregate 
universe, the maximum variation in conditional transi-
tion loss across models is 1.2% (ranging from 6.2% to 
5.1%) (Table 8).

Combining the sensitivities to each parameter indi-
cates that conditional transition loss is predominantly 
influenced by scenario and time horizon choices. Model 
uncertainties have a smaller impact (Table 9).

DISCUSSION AND CONCLUSION
This study enhances the understanding of climate 

transition risks by integrating firm-level data into long-
term scenario analysis to quantify financial impacts in 
equity portfolios. By incorporating revenue (demand 
shifts) and operational cost transmission (carbon 
pricing), it reveals significant intra-sectoral variation. 
Utilities and other climate-related sectors show mixed 

effects, with some firms benefiting and others incurring 
losses. These findings highlight the limitations of  
carbon intensity as a proxy for transition risks.

Long-term forward-looking scenario analyses 
are challenging to compare due to varying assump-
tions. Our findings, slightly lower than existing studies 
(Figure 2), reflect the inclusion of transition benefits, 
unlike most studies that focus solely on losses. For 
Energy and Utilities—the most sensitive sectors—
our results rank in the upper half for transition losses 
(Figure 3). While estimates of conditional transition loss 
vary widely, sector-specific ranges emerge: diversified 

portfolios face losses of 0–15%, while sector-specific 
losses are broader—10–50% for Energy and 10–80% 
for Utilities—highlighting substantial sectoral heteroge-
neity in transition risks.

The sensitivity analysis underscores the substantial 
impact of scenario design and time horizon on transition 
risk. Despite discounting effects, most conditional transi-
tion loss arises from cash flows beyond 2030, emphasizing 
the need for forward-looking approaches. Practitioners 
and regulators should adopt integrated methodologies 
that capture revenue and operational cost impacts while 
leveraging complementary scenarios and models.

Calibrated parameters by TRBC sector
Note: This table presents calibrated parameters for different TRBC sectors, including Weighted-Average 
Cost of Capital (WACC), Tax Rate (τ), Operating Costs Rate (θ), and Net Investments Rate (ρ). The WACC is 
calibrated using the field Cost of Capital. The tax rate (τ) is derived from the Tax Rate field. The operating 
costs rate (θ) is calculated by subtracting the Pre-tax, Pre-stock compensation Operating Margin from the 
Gross Margin. The net investments rate (ρ) is calibrated using the field Net Capex/Sales.

Sector WACC τ θ ρ

Industrials 0.091 0.201 0.116 0.071

Basic Materials 0.094 0.140 0.090 0.038

Cyclical Consumer 0.091 0.138 0.308 –0.005

Energy 0.086 0.136 0.068 0.022

Financials 0.075 0.036 0.232 –0.032

Non-Cyclical Consumer 0.073 0.174 0.241 0.122

Technology 0.107 0.079 0.270 0.026

Telecoms 0.077 0.178 0.309 0.016

Utilities 0.082 0.141 0.190 0.116

Total 0.064 0.125 0.221 0.032

TABLE 2

Conditional transition loss per sector
Note: The table presents the weighted average conditional transition loss for each sector, decomposed 
into total loss, net carbon tax loss, and revenue loss under the Net Zero 2050 scenario (MESSAGEix- 
GLOBIOM 1.1-M-R12 model). The ‘Revenue impact/carbon tax impact ratio’ compares revenue-driven 
losses to carbon tax losses. Ratios above 1 (bolded) indicate revenue shifts outweigh carbon tax effects, 
while those below 1 suggest the opposite. Negative total loss values reflect net gains.

Sector Total (%) From Net 
Carbon Tax (%)

From 
Revenue (%)

Revenue Impact / 
Carbon Tax Impact Ratio

Utilities 57.9 22.2 35.6 1.6

Energy 33.1 12.4 20.7 1.7

Basic Materials 22.0 20.1 1.0 0.1

Industrials 9.8 4.9 5.0 1.0

Non-Cyclical Consumer 4.7 3.0 1.8 0.6

Financials 3.1 1.2 1.9 1.5

Healthcare 2.5 0.7 1.7 2.5

Telecoms 2.1 0.3 1.8 6.3

Technology 1.8 0.3 1.5 4.6

Cyclical Consumer –1.6 1.7 –3.3 1.9

MSCI World 5.9 2.9 3.0 1.0

TABLE 3

19 Basic Materials displays a revenue-to-carbon-tax ratio of only 0.05, making it almost immune to the revenue dimension. Its high exposure to carbon taxes likely stems from minimal 
expected demand shifts under transition scenarios. Decarbonisation in this sector depends more on energy supply chain shifts (Energy and Utilities) than on demand-side changes.
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Summary statistics by sector
Note: Summary statistics for total loss, loss from net carbon tax, and loss from revenue are presented for Utilities, Energy, Basic Materials, Industrials, and the MSCI 
World index under the Net Zero 2050 scenario using the MESSAGEix-GLOBIOM 1.1-M-R12 model. The data includes mean, standard deviation, minimum, maximum, 
and quartiles (Q1, median, Q3) for each sector. Total loss reflects overall transition risk impacts, while net carbon tax and revenue losses isolate carbon pricing and 
revenue effects. Negative values indicate gains.

Sector Nb. of Stocks Mean Std Dev Min Max Q1 50% Q3

a) Conditional transition lost (total) (%)

Utilities 69 51.8 27.3 –97.5 71.1 49.5 58.9 67.3

Energy 59 30.8 22.1 –84.6 57.1 27.4 33.3 43.8

Basic Materials 88 22.0 20.2 –0.7 66.7 5.1 15.2 33.0

Industrials 215 8.4 13.1 –13.7 65.1 1.9 2.5 7.8

MSCI World 1287 9.2 17.0 –97.5 71.1 1.8 2.2 5.3

b) Loss from net carbon tax (%)

Utilities 69 22.4 25.4 0.0 138.0 5.1 16.9 30.2

Energy 59 12.7 10.3 0.1 33.9 4.9 9.5 18.4

Basic Materials 88 20.3 20.3 0.1 64.3 4.0 13.6 32.0

Industrials 215 4.2 10.6 0.0 63.4 0.3 0.7 1.5

MSCI World 1287 4.7 11.7 0.0 138.0 0.1 0.4 2.3

c) Loss from revenue (%)

Utilities 69 29.3 31.9 –97.9 49.0 20.2 46.5 48.9

Energy 59 18.0 16.1 –85.0 340.0 23.2 23.3 23.3

Basic Materials 88 1.6 3.1 –17.4 21.9 1.6 1.6 1.6

Industrials 215 4.2 6.5 –15.2 18.4 1.7 1.7 1.7

MSCI World 1287 4.6 11.3 –97.9 49.0 1.7 1.7 1.8

TABLE 4

Relationship between carbon intensity and conditional transition loss
Note: The graphics display the relation between carbon intensity and various loss types across Utilities, Energy, Basic Materials, and Industrials under the Net Zero 
2050 scenario (MESSAGEix-GLOBIOM 1.1-M-R12). Each plot presents loss sensitivity to carbon intensity levels, measured as the logarithm of Scope 1+2 intensities. The 
subplots illustrate the total loss, loss from net carbon tax, and loss from revenue. Winsorization at the 1st and 99th percentiles mitigate extreme values. Log transfor-
mation allows for a more balanced visualization.
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Conditional transition loss sensitivity to scenario
Note: This table displays sectoral losses across transition scenarios—Net Zero 2050, Below 2°C, Delayed Transition, and Fragmented World. The Max-Min column 
captures the difference between maximum and minimum losses, indicating each sector’s sensitivity to transition risks. Higher values denote greater sensitivity; lower 
values suggest stability across scenarios.

Sector Net Zero 2050 Below 2°C Delayed Transition Fragmented World Max-Min

Utilities 57.9 26.6 21.7 9.9 47.9

Energy 33.1 9.8 7.5 3.3 29.8

Basic Materials 22.0 2.9 2.7 1.1 20.9

Industrials 9.8 2.6 2.0 1.2 8.6

MSCI World 6.2 1.2 1.0 0.4 5.8

TABLE 5

Conditional transition loss sensitivity to horizon
Note: This table presents sectoral loss sensitivity to time horizons (2030 vs. 2050), with percentage losses for each sector at both points. The 2030/2050 column reflects 
near-term versus long-term impacts, while the Max-Min column captures the range of change over time. Higher Max-Min values indicate greater variation; lower 
values suggest more stability.

Sector 2030 2050 2030/2050 Max-Min

Utilities 29.3 57.9 0.5 28.5

Energy 12.5 33.1 0.4 20.6

Basic Materials 9.0 22.0 0.4 13.0

Industrials 3.1 9.8 0.3 6.8

MSCI World 2.5 6.2 0.4 3.7

TABLE 6

Revenue impact/carbon tax impact ratio
Note: This table displays the ratio of revenue 
impact to carbon tax impact across sectors 
for 2030 and 2050. A ratio above 1 indicates 
revenue impact exceeds carbon tax impact, 
while a ratio below 1 suggests the opposite. 
Shifts between 2030 and 2050 highlight 
how the relative importance of these factors 
evolves over time.

Sector 2030 2050

Utilities 0.7 1.6

Energy 0.9 1.7

Basic Materials 0.1 0.1

Industrials 0.6 1.0

MSCI World 0.7 1.0

TABLE 7

Conditional transition loss sensitivity to model
Note: This table sectoral loss sensitivity to different climate-economy models—MESSAGEix-GLOBIOM 
1.1-M-R12, GCAM 6.0 NGFS, and REMIND-MAgPIE 3.2-4.6—under the Net Zero 2050 scenario. The Max-
Min column captures the range of variability in model outcomes.

Sector MESSAGEix-
GLOBIOM 1.1-M-R12

GCAM 6.0 
NGFS

REMIND-
MAgPIE 3.2-4.6

Max-Min

Utilities 57.8 51.1 56.5 6.7

Energy 33.1 22.7 26.3 10.4

Basic Materials 22.0 12.2 13.2 9.8

Industrials 9.8 5.9 5.0 4.8

MSCI World 6.2 5.2 5.1 1.2

TABLE 8
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Conditional transition loss sensitivity to 
the main parameters
Note: This table presents sectoral loss sen-
sitivity to calibration settings, including 
scenario (Max-Min Scenario), time horizon 
(Max-Min Horizon), and integrated assess-
ment model (Max-Min Model). The values 
indicate the range of potential outcomes by 
measuring the difference between maxi-
mum and minimum losses.

Sector Max-Min 
Scenario

Max-Min 
Horizon

Max-Min 
Model

Utilities 47.9 28.5 6.7

Energy 29.8 20.6 10.4

Basic 
Materials

20.9 13.0 9.8

Industrials 8.6 6.8 4.8

MSCI 
World

5.8 3.7 1.2

TABLE 9

Comparison of  conditional transition loss estimates in the literature for a diversified equity 
portfolio
Note: The figure displays the conditional transition loss per sector for a diversified portfolio, using each 
study’s most stringent scenario. The selected horizon corresponds to either the study’s default or the one 
yielding the most adverse outcomes.
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Comparison of  conditional transition loss estimates in the literature for transition-sensitive sectors
Note: The figure displays total sectoral losses for a diversified portfolio under each study’s most stringent scenario. Horizons align with default settings or the most 
adverse outcomes. Sector classifications were standardized to TRBC sectors (Energy and Utilities), with median values used where aggregation was needed.
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Do ESG Scores and ESG Screening Tell the Same 
Story? Assessing their Informational Overlap

This study examines the informational overlap between environmental, social, and governance (ESG) scores and ESG exclusionary screening strategies 
within equity portfolios.

•	 While ESG scores are widely used for integrating sustainability considerations in portfolio management, they may not fully align with exclusion criteria 
targeting companies engaged in controversial activities or behavior.

•	 By comparing the results of both approaches on a set of 417 indexes, the analysis reveals that reliance on ESG scores alone omits a substantial propor-
tion of companies that fail to meet “do no harm” criteria.

•	 However, the results show that exclusion strategies can enhance a portfolio’s ESG score, suggesting a complementary role in achieving sustainable 
investment objectives.

INTRODUCTION
The Global Sustainable Investment Alliance (GSIA) 

defines sustainable investment as an “investment 
approach that considers environmental, social and gov-
ernance (ESG) factors in portfolio selection and man-
agement” (GSIA, 2021). Under this broad definition, 
the volume of global sustainable investments reached 
USD30.3 trillion in 2022, representing approximately 
38% of all professionally managed assets. Within sus-
tainable investment strategies, exclusionary screening, 
ESG integration,20 and engagement represent the most 
prevalent approaches. While these strategies may the-
oretically complement one another, in practice, they 
rely on diverse data sources which can lead to incon-
sistent outcomes. This study focuses on examining the 
relationship between exclusion screening, guided by 
“do-no-harm” criteria, and ESG integration, guided by 
ESG scores.

Exclusion screening, historically the earliest practice 
within sustainable finance, remains widely adopted 
despite a recent slowdown (GSIA, 2023). The Finan-
cial Exclusion Tracker Initiative reports that exclusions 
currently emphasize climate-related concerns. For 
instance, the EU regulation on climate benchmarks 
mandates exclusion criteria concerning fossil fuel- 
related activities and adheres to the “do-no-harm” 
principles embedded in the EU Taxonomy. In practice, 
investors implement these exclusion thresholds based 
on data detailing companies’ operational activities 
(e.g., revenue composition, energy mix) and behavior 
(e.g., controversies).

In contrast, ESG integration has gained momen-
tum, driven by client preferences and regulatory pres-
sure (GSIA, 2023; PRI, 2023). Integrating ESG criteria is 
increasingly recognized as part of an investor’s fiduciary 
duty and is a prerequisite for claiming alignment with 
sustainable objectives, as outlined in Articles 8 and 9 of 
the Sustainable Finance Disclosure Regulation (SFDR). 
In practice, ESG scores – whether proprietary or pro-
vided by external data providers – are the most com-
mon data source supporting this approach.

To clarify the relationship between exclusion 
screening and ESG integration, this study addresses 

the following questions: do strategies based solely on 
ESG scores naturally shield investors from companies 
whose activities or behaviors may cause harm? When 
combined with ESG integration, do exclusion strategies 
improve ESG scores?

DATA AND METHOD
These questions are explored through an analy-

sis of the composition of 417 diversified indexes from 
the Developed Europe and United States investment 
regions, as of October 2024.

To capture the variety in exclusion practices – includ-
ing themes, criteria, and thresholds, three distinct exclu-
sion strategies, developed by Porteu de la Morandière, 
Vaucher and Bouchet (2025), are considered. The first 
strategy reflects consensus-based exclusion crite-
ria among the largest 100 asset owners; the second 
includes additional climate criteria defined by the 
Paris-Aligned Benchmark standards; the third excludes 
companies that contribute negatively to the United 
Nations Sustainable Development Goals (SDGs) (see 
Appendix for details on the three strategies). In terms of  

Descriptive statistics related to ESG screens
Note: This table shows, for each ESG exclusion strategy (ESG screen), descriptive statistics related to the 
stocks that do not meet the criteria defined by the screen. The second column from the left shows the 
average financial weight represented by these stocks in the indexes for each region, while the third and 
fourth columns show the number of these stocks and their financial weight within the benchmarks for 
each region.

a) Developed Europe

ESG 
Screen

Indexes (n = 130) Benchmark Companies (n = 406)

Average Weight Excluded Number Excluded Weight Excluded

Consensus 12.5% 35 13.3%

PAB 15.3% 46 15.9%

SDG 55.2% 176 58.3%

b) United States

ESG 
Screen

Indexes (n = 387) Benchmark Companies (n = 467)

Average Weight Excluded Number Excluded Weight Excluded

Consensus 13.9% 54 14.3%

PAB 19.6% 68 17.5%

SDG 61.2% 213 68.7%

TABLE 1

20 Defined as the “consideration of ESG factors within an investment analysis and decision-making process with the aim to improve risk-adjusted returns” (GSIA, 2023, p. 7).  
https://scientificportfolio.com/pdfs/2024-12-do-esg-scores-and-esg-screening-tell-the-same-story.pdf.
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weight excluded, the Consensus and PAB screens have 
similar impacts for Developed Europe indexes, while 
the SDG screen leads to significantly higher exclusions 
(Table 1 and Table 1 in “Do ESG Exclusions have an 
Effect on Portfolio Risk and Diversification?”, p. 22).

ESG scores have been the subject of much debate 
and are known to vary widely across providers. Dif-
ferent providers often assign different scores to the 
same company or the same fund. For example, among 
S&P 500 companies, the average correlation between 
ESG ratings from six providers is less than 0.5 (Gibson 
Brandon et al., 2022). Furthermore, only 20% of funds 
deemed ESG-compliant by any one of the three major 
providers – Bloomberg, Morningstar, or Refinitiv – are 
classified as sustainable by all three. At the company 
level, Berg, Koelbel and Rigobon (2022) show that the 
divergence in ESG scores is mainly explained by differ-
ences in the measurement of each of the underlying 
ESG attributes, but also by different attribute weights, 
and to a lesser extent by differences in the attributes 
included in the scope of these scores.21 To account 
for this heterogeneity in ESG scores, this study uses 
a unique database provided by ValueCo that aggre-
gates ESG scores from more than five asset managers 
for each equity issuer. ValueCo22 specializes in collect-
ing proprietary extra-financial assessments developed 
internally by asset managers to provide an ESG market 
view, similar to an ESG bid-offer system for financial 
markets.23 Notably, companies and indexes in the 
Developed Europe region generally have higher aver-
age ESG scores compared to those in the United States 
region (Table 2).

Descriptive statistics of  ESG scores
Note: This table shows, for each ESG score dimension, descriptive statistics related to the score of the stocks. 
The second column from the left shows the average financial cap-weighted score in the indexes for each 
region, while the third and fourth columns show the cap-weighted score of the corresponding regional 
benchmark. The share of companies covered by scores – with a minimum of five independent ratings per 
company – is on average 97% for the Developed Europe indexes and 94% for the United States indexes.

a) Developed Europe

Dimension Average Score (cap-weighted) 
of Indexes (n = 130)

Cap-Weighted Score 
of Companies (n = 406)

ESG 59.8 58.4

E 56.0 53.0

S 56.9 55.1

G 68.7 66.5

b) United States

Dimension Average Score (cap-weighted) 
of Indexes (n = 387)

Cap-Weighted Score 
of Companies (n = 467)

ESG 48.6 48.9

E 45.7 41.6

S 48.3 51.5

G 58.2 57.0

TABLE 2

Impact of  exclusion according to the ESG score quartile at the indexes level and at the benchmark company’s level
Note: This table shows the evolution of the weight of stocks that do not meet the “do no harm” criteria associated with the three screens, as a function of the ESG score. 
The left columns show the average weight of these stocks for different indexes grouped by quartile according to their EGS score (indexes in q4 are those with the 
highest scores), while the right-hand columns do the same for benchmark stocks.

a) Developed Europe

Indexes (n = 130) Benchmark (n = 406)

Quartile Average 
Score of 
Indexes

Average Weight Excluded 
of Indexes

Quartile Average Score of 
the Benchmark 

Companies

Nb. of the Benchmark 
Companies Excluded

Consensus PAB SDG Consensus PAB SDG

q1 (n = 33) 55.6 13.4 24.4 60.1 q1 (n = 102) 45.9 19.0 22.0 54.0

q2 (n = 32) 59.1 11.3 13.2 56.8 q2 (n = 101) 57.0 4.0 8.0 38.0

q3 (n = 32) 60.8 6.8 8.5 55.0 q3 (n = 102) 62.1 3.0 5.0 41.0

q4 (n = 33) 63.7 8.1 8.8 49.2 q4 (n = 101) 68.8 9.0 11.0 43.0

b) United States

Indexes (n = 387) Benchmark (n = 467)

Quartile Average 
Score of 
Indexes

Average Weight Excluded 
of Indexes

Quartile Average Score of 
the Benchmark 

Companies 

Nb. of the Benchmark 
Companies Excluded

Consensus PAB SDG Consensus PAB SDG

q1 (n = 97) 42.6 20.7 35.2 68.6 q1 (n = 117) 32.4 40.0 52.0 84.0

q2 (n = 96) 48.1 14.0 18.3 61.1 q2 (n = 117) 47.3 5.0 7.0 42.0

q3 (n = 96) 50.1 11.5 15.3 59.9 q3 (n = 116) 53.7 2.0 2.0 42.0

q4 (n = 97) 53.6 7.0 8.1 55.1 q4 (n = 117) 62.1 7.0 7.0 44.0

TABLE 3

21 The respective contributions of “measurement”, “scope” and “weight” are 56%, 38% and 6%.
22 See https://www.valuecometrics.com/en.
23 Scores are normalised between 0 and 100. Unless specifically indicated otherwise, the scores used in this study are the median scores for each issuer.

https://www.valuecometrics.com/en
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Limitations of ESG scores in identifying harmful 
companies

The first result from this study is that good ESG 
scores, whether at the company level or aggregated 
index level, are not sufficient to guarantee that a com-
pany’s activities or behavior align with the do no harm 
criteria. Although indexes with the best aggregate 
ESG scores (those in the fourth quartile) typically con-
tain fewer harmful stocks than those with lower ESG 
scores,24 a notable proportion of stocks within these 
high-scoring indexes should still be excluded accord-
ing to the three exclusion screens. For example, of 
the 97 indexes with the best ESG scores in the United 
States, 41 hold more than 8% of companies that are 
considered harmful according to the consensus criteria 
(by way of reference, the US benchmark contains 14% 
of such companies) (Table 3).

These results are consistent when analyzing the con-
stituents of the regional benchmarks: the companies 
with the best ESG scores do not necessarily meet the 
do-no-harm criteria. In the Developed Europe bench-
mark, out of the 101 companies in the top quartile in 
terms of ESG score, nine companies (approximately 
10%) fail to meet the criteria associated with the Con-
sensus screen. This discrepancy can be attributed to 
several factors.
•	 Firstly, most of these companies operate in the 

Energy and Utilities sectors, which face structural 
sustainability challenges and are often excluded 
from PAB-aligned portfolios. On the other hand, 
best-in-class ESG scoring approaches may identify 
leaders within these sectors and assign them high 
scores for performing better than their peers, even 
though they remain large carbon emitters.

•	 Secondly, ESG scores often take into account a 
broad range of factors, while PAB filters focus on 
climate-related metrics. Good performance or 
ambitious commitment on other environmental 
topics, or regarding social and governance chal-
lenges, may lead a company to get high ESG scores 
in spite of harmful practices and activities from a 
climate-focused point of view.

•	 Finally, some of these companies are actively tran-
sitioning towards more sustainable practices, which 
are valued in their ESG scores, but still have fossil 
fuel exposure excluded under PAB. The forward- 
looking dimension of ESG scores may inflate the 
results of companies showing steady and credible 
improvements in their practices before they actu-
ally meet the criteria to be included in PAB-aligned 
portfolios.25

The second result of this study is that targeting 
companies with the lowest ESG scores within these 
benchmarks does not allow for proper identification of 
companies with harmful activities or behaviors. Within 
the Developed Europe benchmark, a selection of the 
35 companies with the lowest ESG scores – correspond-
ing to the number of exclusions under the Consensus 
screen – reveals that only 12 companies overlap with 
those identified by the Consensus filter. Consequently, 
an exclusion approach based on ESG score rankings 
alone would fail to capture roughly two-third of the 
companies that are deemed to have a negative impact 
according to the consensus criteria.

Exclusion of harmful companies tend to improve 
ESG score

As outlined in the previous section, ESG integra-
tion based solely on ESG scores may not adequately 
ensure alignment with a “do no harm” principle. This 
calls for an examination of the potential compatibility 
between ESG integration and exclusionary screening 

Score of  benchmark constituents with controversial activities or behaviour
Note: This table shows the average score (ESG, E, S, and G) of stocks that do not meet the “do no harm” 
criteria of the different ESG screens within each regional benchmark. Stocks corresponding to companies 
that do not comply with the Consensus and PAB screens have significantly lower ESG scores than the 
other benchmark constituents.

a) Developed Europe

Score Average Score 
of Constituents

Average of Constituents that  
Do not Meet the Criteria

Consensus PAB SDG

ESG 58.4 51.2 52.5 57.1

E 53.0 51.7 52.5 53.3

S 55.1 49.5 51.2 53.7

G 66.5 67.8 66.8 67.0

b) United States

Score Average Score 
of Constituents 

Average of Constituents that  
Do not Meet the Criteria

Consensus PAB SDG

ESG 48.8 33.1 33.4 44.8

E 41.6 40.9 41.1 40.6

S 51.5 51.3 48.9 48.9

G 57.0 56.8 55.4 55.4

TABLE 4

Evolution of  the distribution of  ESG scores of  indexes after exclusion
Note: This graph shows the evolution of the ESG scores of the indexes for each region, after different ESG 
exclusion strategies (ESG screens). Whatever the ESG screen considered, the improvement in the ESG 
score is significant.
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24 The difference between the top-quartile (q4) indexes and those in the second and third quartiles (q2, q3) is not statistically significant for Developed Europe indexes.
25 Companies with higher ESG scores also tend to have more divergent scores (see Appendix). However, the test results remain similar when using the score from the first quartile of the 
score distribution for a given company.



A SUPPLEMENT TO PENSIONS & INVESTMENTS
Research for Institutional Money Management 19

approaches. In particular, it is crucial to assess the 
impact of exclusions on strategies aimed at maximizing 
a portfolio’s ESG score.

The analysis suggests that excluding harmful stocks 
does not hinder such strategies. On the contrary, exclu-
sions tend to have a positive effect on the aggregate 
ESG score. Applying the three exclusion screens to the 
set of indexes, followed by a proportional reweighting, 
leads to a significant increase in their weighted average 
ESG scores (Figure 1).

These results are consistent when analyzing the con-
stituents of both benchmarks. Companies that do not 
meet the criteria set by the Consensus and PAB screens 
typically have ESG scores significantly below the aver-
age, a trend that is especially pronounced among US 
companies26 (Table 4).

However, the impact of exclusions on the aggregate 
ESG score depends on the initial level of the aggregate 
ESG score. For Developed Europe, indexes already 
exhibiting a high ESG score (in the fourth quartile q4), 
exclusions have no significant positive effect (Table 5).

As mentioned in the previous section, certain com-
panies with high ESG scores are excluded, potentially 
reducing the aggregate ESG score of portfolios con-
centrated on these stocks. In our index universe, only 
two indexes are subject to a (non-significant) reduction 
in their aggregate ESG score.

CONCLUSION
This study shows that ESG integration relying solely 

on ESG scores does not ensure alignment with the 
“do no harm” principles within portfolios. The anal-
ysis of diversified indexes from Developed Europe 
and the United States demonstrates that exclusionary 
screening based on ESG criteria identifies companies 
engaging in harmful activities or behaviors that ESG 
scores alone may fail to identify. However, these two 
approaches are not incompatible. Applying exclusion 
screens generally improves the weighted average ESG 
scores of indexes, indicating that exclusions can com-
plement ESG integration by refining portfolio quality 
without detracting from ESG performance. These find-
ings highlight the potential for exclusionary practices 
to reinforce ESG integration, supporting the creation 
of more sustainable and resilient investment portfo-
lios. The natural next step would be to anticipate the 
financial impact of such exclusions, a topic which is cov-
ered in Porteu de la Morandière, Vaucher and Bouchet 
(2025) where they find that applying exclusions either 
based on consensus criteria or climate criteria has a rel-
atively low impact on the financial risk profile of indexes 
and that this impact can be further reduced with an 
optimized reallocation.

APPENDIX

ESG exclusion screens
The “Consensus” screen is based on an analysis of 

the exclusion policies of the world’s 100 largest asset 
owners. This analysis resulted in a set of four crite-
ria most frequently used by asset owners that define 
the screen: the controversial weapons industry, the 
tobacco industry, the coal industry and controversies 
related to the United Nations Global Compact (UNGC) 
10 principles.27

The PAB screen is based on the minimum standards28 
that define EU Climate Transition Benchmarks and 
Paris-aligned Benchmarks. In addition to minimum 
reduction of greenhouse gas footprint (not considered 
in this article), these standards define exclusion criteria 
related to climate change (coal and fossil fuels indus-
tries) and to sustainable development (tobacco and 
controversial weapons industries, controversies related 
to the UNGC principles.

Impact of  exclusion on the weighted average scores of  the indexes by Quartile
Note: This table shows the changes in the cap-weighted average ESG score of indexes after different ESG 
exclusion strategies, according to the starting ESG score of these indexes (by quartiles). For Developed Europe 
indexes already exhibiting a high ESG score (q4), none of the exclusion strategies have a significant effect.

a) Developed Europe

Indexes (n = 130)

Quartile Average 
Score of 
Indexes

New Weighted Average  
Indexes Scores After Exclusion

Consensus PAB SDG

q1 (n = 33) 55.6 58.3 58.6 59.0

q2 (n = 32) 59.1 60.3 60.4 60.8

q3 (n = 32) 60.8 61.1 61.1 61.6

q4 (n = 33) 63.7 63.6 63.6 63.7

b) United States

Indexes (n = 387)

Quartile Average 
Score of 
Indexes

New Weighted Average  
Indexes Scores After Exclusion

Consensus PAB SDG

q1 (n = 97) 42.6 46.2 47.7 48.7

q2 (n = 96) 48.1 50.4 51.2 52.1

q3 (n = 96) 50.1 51.7 52.4 53.6

q4 (n = 97) 53.6 54.2 54.4 55.6

TABLE 5

Dispersion of  ESG scores
Note: This table shows the dispersion of ESG scores for benchmark constituents according to their initial ESG 
score (stocks are grouped by quartiles), and according to whether they are excluded by different ESG screens 
(right columns). The dispersion score is expressed between 0 (no dispersion) and 100 (maximum dispersion) 
and corresponds to the deviation from the average of the scores given by the different asset managers.

a) Developed Europe

Quartile Average ESG 
Scores Dispersion 
of the Companies 
in the Benchmarks

Average ESG Scores Dispersion  
of the Companies Excluded

Consensus PAB SDG

q1 77.1 74.8 74.9 76.7

q2 78.6 76.5 76.4 77.1

q3 79.0 74.5 73.0 76.4

q4 79.3 81.0 81.0 80.0

b) United States

Quartile Average ESG 
Scores Dispersion 
of the Companies 
in the Benchmarks

Average ESG Scores Dispersion  
of the Companies Excluded

Consensus PAB SDG

q1 84.8 83.4 84.1 85.1

q2 76.8 76.4 77.4 75.5

q3 76.2 83.8 83.8 77.2

q4 75.4 76.1 76.1 76.1

TABLE 6

26 In contrast, companies excluded by the SDG filter tend to have ESG scores close to the benchmark average.
27 The ten principles are available at: https://unglobalcompact.org/what-is-gc/mission/principles.
28 Commission Delegated Regulation (EU) 2020/1818.

https://unglobalcompact.org/what-is-gc/mission/principles
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Finally, the “sustainable development goals” or SDG 
screen is based on the United Nations sustainable devel-
opment goals framework adopted in 2015. This frame-
work consists of 17 goals and 169 targets to be achieved 
by 2030, covering social, environmental, and economic 
issues. The exclusion criteria of the corresponding 
screen cover any activities or behavior that would hinder 
the achievement of these goals and targets (the com-
plete methodology for the three screen is available in 
Porteu de la Morandière, Vaucher and Bouchet, 2025).

ESG score dispersion
Within the EU benchmark, companies with high 

ESG score – including those that are excluded by the 
different ESG screens – exhibit a high dispersion in their 
ESG scores (Table 6), potentially indicating that while 
these companies perform well in most ESG areas, cer-
tain aspects of their operations are heterogeneously 
penalized by the different asset managers rating 
scales. Another interpretation could be a misalignment 
between the reporting and the actual performance of 
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these companies on ESG topics. When they underreport 
or, on the contrary, indulge in greenwashing, ESG data 
providers have different methodologies to estimate the 
gaps or penalize misleading claims. The data sources 
employed by investors for their responsible investment 
strategy may therefore introduce divergence in the 
resulting scores. This is not the case for the US index, 
where ESG score dispersion is already high across the 
board, reflecting broader variability in how companies 
are evaluated by the different asset managers.



A SUPPLEMENT TO PENSIONS & INVESTMENTS
Research for Institutional Money Management 21

Do ESG Exclusions have an Effect  
on Portfolio Risk and Diversification?

Vincent Bouchet
Director of ESG and Climate Research

Scientific Portfolio
vincent.bouchet@scientificportfolio.com

Aurore Porteu de La Morandière
ESG Researcher

Scientific Portfolio
aurore.porteudelamorandiere@edhec.edu

Benoit Vaucher
Head of Research
Scientific Portfolio

benoit.vaucher@scientificportfolio.com

Exclusion/negative screening is the most popular methodology used to integrate environmental, social, and governance (ESG) criteria into investment 
strategies. It consists of excluding instruments issued by companies that don’t meet the criteria defined in the manager’s investment policy. This method is 
often applied in passive investment strategies that combine exclusion criteria with index replication. In this article (a summary of a recent research paper29), 
we examine the impact of exclusion policies on the financial risks of 493 indexes from Developed Europe and the US. To address varying ESG criteria, we 
built three screens: one based on consensual criteria among asset owners, another incorporating additional climate criteria, and a third eliminating companies 
negatively impacting any United Nations sustainable development goal. The first two screens show limited impact on index risks, especially when using 
optimized reallocation.

•	 On a sample of 128 European indexes, the application of our ESG screens leads to an average excluded weight of 9%, 10% and 58% for our consensus, 
climate and SDG screens, respectively; on a sample of 365 US indexes, it results in an average exclusion of 19%, 23% and 67%, depending on the 
screen.

•	 Applying ESG screens with a naïve (pro rata) reallocation method results in a median tracking error between 0.9% and 4.7%, varying by screen and 
region. Sector deviations are most significant in the “Energy” and “Utility” sectors. Exclusions increase exposure to the Fama and French (2015) “prof-
itability” factor while slightly reducing exposure to “investment” and “value” factors. Using an optimized reallocation method reduces the tracking error 
by 0.3% and 1.6% and minimizes factor exposure deviations.

•	 ESG screens often reduce carbon footprint. With naïve reallocation scheme, reductions can reach up to 54% after PAB screening in the US sample. 
However, this reduction does not occur when using optimized reallocation.

INTRODUCTION
Exclusion, the oldest practice in sustainable 

finance (Schueth, 2003), remains very popular, with 
about USD3,840 billion of assets under manage-
ment (AUM) subject to negative screening, and 
USD1,807 billion subject to norm-based screening, 
out of USD30,321 billion in total sustainable AUM 
(GSIA, 2023). Despite variations in motivation, crite-
ria and thresholds, exclusion remains a foundational 
sustainable strategy. Based on a review of the aca-
demic literature, Bouchet and Safaee (2024) highlight 
that the main building blocks that investors ought 
to consider – themes, levers (including exclusion, 
allocation, and engagement) and data – are interde-
pendent and propose four families of coherent sus-
tainable investment strategies. Although each strategy 
targets a specific type of extra-financial impact, all 
incorporate exclusion (Table 1). This study focuses 
on exclusions based on environmental, social and/or 
governance (ESG) criteria that can contribute to these 
strategies.

Exclusion reduces a company’s access to capital, 
raising its market-implied cost of equity and pressur-
ing it to reform if the cost of change is lower than the 
share price loss30 (Heinkel et al., 2001; Pástor et al., 
2021; De Angelis et al., 2022). The effects of exclu-
sion are also indirect: Bergman (2018) highlights the 
public discourse shift over the low-carbon transition 
and Braungardt et al. (2019) show the positive effects 
of the divestment movement on effective climate pol-
icy development. Bouchet and Safaee (2024) conclude 
that exclusion is relevant in three main situations: for 
consensus non-sustainable activities such as human 
rights violations, when other levers such as shareholder 

engagement have failed, or when it is a moral impera-
tive for investors.

Whatever the extra-financial motivation, asset- 
owners need to anticipate the financial impact of ESG 
exclusion. However, the existing literature presents 
contradictory results. The lack of consensus on the rela-
tion between ESG exclusion and financial performance 
might be explained by differences in sample character-
istics (region, period, size) and the diversity of exclu-
sion criteria. This is supported by Plagge (2023), who 
shows that the direction of the financial impact of ESG 
exclusions on portfolio returns depends on both the 
exclusion criteria and the region sample to which they 
are applied. More recently, Porteu de la Morandière 
et al. (2024) analyzed the effects of applying some cli-
mate-related exclusion criteria on fund risks rather than 
their short-term performance, arguing that the fund’s 
risk profile is responsible for its long-term performance, 
and should thus be a primary concern for asset owners. 
Focusing on a sample of sustainable funds according to 
the European Union (EU) sustainable finance disclosure 
regulation (SFDR), their results suggest that excluding 
climate-related controversial stocks would have a lim-
ited impact on the funds’ tracking error, sector expo-
sure or factor exposures.

Our research aims to extend the work of Porteu 
de la Morandière et al. (2024) on two levels. Firstly, we 
include both conventional and sustainable instruments 
with a sample of 493 indexes domiciled in Europe and 
the US. Secondly, the exclusion criteria are not limited 
to climate change-related activities but cover broader 
ESG issues. Given the complexity of ESG criteria, we 
define three exclusion screens, with increasing impacts, 
that correspond to common sustainable investment 

policies. The first screen, termed “consensus”, involves 
consensus exclusion criteria; the second screen incor-
porates additional climate net criteria defined in the 
Paris-aligned benchmarks (PAB) standards; the third 
screen excludes stocks that contribute negatively to 
sustainable development goals (SDG).

We find that ESG screening excludes 10–60% 
of weights in 128 European indexes and 20–70% 
of weights in American indexes. A naïve (pro rata) 
reallocation results in a median tracking error of 
0.9–4.7%, with a 1.5% increase per 10% of excluded 
weights. Sector deviations occur mainly in Energy and 
Utilities. ESG exclusions tend to increase exposure to 
the “profitability” factor while slightly reducing expo-
sure to “investment” and “value” factors, depending 
on the screen and the sample region. The reallocation 
method significantly impacts tracking error and factor 
deviations. The optimized reallocation method lowers 
median tracking error by 0.3–1.6% and reduces factor 
deviations. With this approach, every 10% of excluded 
weights increases tracking error by 1.1%, compared to 
1.5% in naïve reallocation. ESG screening followed by a 
naïve reallocation reduces carbon footprint (up to 54% 
after the PAB screening on the US sample) while the 
ESG screening followed by an optimized reallocation 
has no significant impact on carbon footprint reduction.

These results suggest that reducing the investment 
universe to build a sustainable index can lead to a rel-
atively low impact on its financial risk profile, which 
can be further reduced with an optimized reallocation 
method. However, if the strategy is to reduce its car-
bon footprint, the optimized reallocation should be 
constrained to reduce risk while maintaining maximum 
carbon footprint reduction.

29 Porteu de La Morandière, A., Vaucher, B., & Bouchet, V. September 2024. Do Exclusions Have an Effect on the Risk Profile of Equity Portfolios? Scientific Portfolio Publication.  
https://scientificportfolio.com/pdfs/2024-09-do-exclusions-have-an-effect-on-the-risk-profile-of-equity-portfolios.pdf.
30 Bouchet and Safaee (2024) highlight that companies may grow without relying on equity markets, challenging this mechanism.
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mailto:aurore.porteudelamorandiere@edhec.edu
mailto:benoit.vaucher@scientificportfolio.com
https://scientificportfolio.com/pdfs/2024-09-do-exclusions-have-an-effect-on-the-risk-profile-of-equity-portfolios.pdf
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DATA AND MODEL
We analyze 493 indexes using three ESG screens, 

assessing tracking error, sector deviations, and risk fac-
tor exposure under two reallocation methods: naïve 
(pro-rata) and optimized. Tracking errors are evaluated 
using a covariance matrix based on stock returns from 
December 2018 to December 2023.

Sample of financial instruments
Our sample includes 128 developed European 

indexes (208 equities in average) and 365 US indexes 
(306 equities in average), selected from an initial 
sample of 517 indexes.31 Indexes were excluded 
if they had less than a year of historical data, over 
1% exposure to emerging markets, or incomplete 
composition covering under 85% of the capital  
invested.

Environmental, social, and governance screens
We define three ESG screens reflecting investor 

strategies. The “Consensus” screen, based on the 
policies of the 100 largest asset owners, excludes 
weapons, tobacco, coal and controversies related 
to the United Nations Global Compact (UNGC) 
10 principles.32 The PAB screen follows EU Cli-
mate Transition and Paris-aligned Benchmarks and 
excludes fossil fuels and industries misaligned with 
sustainable development. The SDG screen aligns 
with the UN’s 17 Sustainable Development Goals 
(SDGs) goals and excludes activities hinder their 
achievement.

Risk metrics and sustainability indicator
We assess the impact of ESG exclusions using track-

ing error, sectors deviations, and deviations in exposure 
to Fama-French (2015) risk factors, including momen-
tum. Additionally, we analyze their effect on portfolio 
carbon footprint.

Exclusion as a foundation for coherent sustainable strategies
Note: This table outlines four coherent sustainable equity strategies. The “sustainable” strategy ensures portfolio alignment with companies that “do no harm” on 
environmental and social issues. The “transition” strategy seeks to reform companies with negative impacts. The “solutions” strategy prioritizes investments in com-
panies addressing specific sustainability challenges. The “ethical” strategy aligns investments with personal or religious values.
Source: Bouchet and Safaee (2024).

Strategy Targeted Companies Themes Levers

Exclusion Allocation Shareholders Engagement 
& Field Building

Sustainable Company behavior and 
activities “do no harm” 
to any of the SDGs

All Covering all SDGs, based 
on revenues, physical 
metrics, controversies

Optimizing risk and return under 
exclusion constraints

Publication of exclusion list

Transition Company behavior 
and activities “do 
harm” to certain SDGs, 
but where change is 
possible

Specific Companies not prioritized 
for engagement
+
Companies where 
engagement has failed 

Optimizing risk and return under 
exclusion and sustainability exposure 
(min./max. share of “transition 
companies”) constraints

Systematically engaging on issues 
related to the specific theme chosen.
Publication of targets, engagement 
outputs, and exclusion list

Solutions Company activities 
contribute positively 
to specific SDGs

Specific Covering all SDGs, based 
on revenues, physical 
metrics, controversies 

Optimizing risk and return under 
exclusion and sustainability exposure 
(min. share of “positive contribution 
companies”) constraints

Focusing on engagement related 
to activities (strategy, investments)

Ethical Company behavior 
and activities are in line 
with ethical choices

All Based on subjective 
preferences

Optimizing risk and return under 
exclusion constraints

–

TABLE 1

Distribution of  indexes weight excluded by screen and region
Note: The red marks represent the reference index for each region: the 410 largest companies (Developed 
Europe) and the 500 largest companies (US), both weighted by market capitalization.
Source: Authors’ calculation.

FIGURE 1

31 We approximate the index compositions by using those of ETFs that closely track them.
32 The ten principles are available at: https://unglobalcompact.org/what-is-gc/mission/principles.

https://unglobalcompact.org/what-is-gc/mission/principles
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Naïve and optimized reallocation
We apply two methods to reallocate the weights 

of the excluded stocks. First, the naïve method 
corresponds to a pro-rata reweighting of the index 
remaining stocks.33 This method assumes that an 
investment manager sells the controversial equities and 
reinvests in the remaining equities proportionally to 
their initial weight.

Second, the optimized method relies on a tracking 
error minimization between the original portfolio wold 
and the new portfolio wnew. The reallocation is the solu-
tion to the minimization program:

	 w argmin w w w wnew w old
T

old� � �( ) ( )�

using a Ledoit and Wolf (2003) normalized covari-
ance matrix (Ω) for ex-post tracking error estimation.34 
Portfolios remain long-only with equal capital invest-
ment before and after reallocation. The strategy 
reduces the impact of the ESG exclusions on the risk 
of the portfolio by reinvesting in stocks with similar risk 
profiles to excluded equities.

RESULTS
This section presents the impact of ESG screens 

on excluded index weights, followed by their effects 
on risk profiles, including tracking error, sector devi-
ation, factor exposure under naïve reallocation. We 
then show how optimized reallocation mitigates these 
effects and examine the varying impact of ESG exclu-
sions on carbon footprint depending on the realloca-
tion method.

Excluded weight of the indexes
The impact of excluded weight varies by region 

(Developed Europe, US), and ESG screen (Consen-
sus, PAB, SDG). In Developed Europe, the Consensus 
and PAB screens exclude a median of 9%, while the 
SDG screen excludes 58%. In the US, the Consensus 
and PAB screens have twice the impact (20% median 
exclusion), while the SDG has a similar effect (67%) 
(Figure 1).

The impact varies by index theme (ESG, Energy, 
Utilities, or other). Energy and Utilities indexes are 
most affected by the Consensus and PAB screens due 
to fossil fuel-related exclusions. ESG indexes are less 
impacted by these screens but are not shielded from 
the SDG screen, which excludes stocks beyond com-
mon ESG strategies. This suggests most ESG indexes 
do not fully align with all Sustainable Development 
Goals (Figure 2).

Impact of ESG exclusions on the risk profile 
of indexes with naïve reallocation

ESG exclusion followed by naïve reallocation intro-
duces tracking error. For Developed Europe indexes, 
the median tracking error is 0.9% for the Consensus 
screen and 4.7% for the SDG screen. In the US, where 
exclusions are higher, the impact is greater, with track-
ing error ranging from 1.5% (Consensus screen) to 4.7% 
(SDG screen). Across regions and screens, tracking error 
increases relatively linearly with exclusions. Each addi-
tional 10% in excluded weight raises tracking error by 
about 1.5% (Figure 3).

The impact of ESG exclusions on tracking error 
relative to the regional cap-weighted benchmark 
is uncertain. The median increase is 0.2% for the 
Consensus screen (Developed Europe and US) and up 
to 2.3% for the SDG screen (Developed Europe, 1.7% 
for US). Unlike tracking error relative to the initial index, 
the relationship between excluded weight and tracking 

Distribution of  indexes weight excluded by screen, region, and type
Note: The index themes are classified based on their names. The ESG category includes indexes contain-
ing terms like “ESG”, “screen”, “climate”, “transition”, “change”, “SRI”, “PAB”, “sustainability”.
Source: Authors’ calculation.

FIGURE 2

Impact of  ESG exclusions on the tracking error between the screened and original index 
portfolio (Naïve reallocation)
Note: Tracking errors are calculated using a Ledoit and Wolf (2003) normalized sample covariance matrix.
Source: Authors’ calculation.

FIGURE 3

33 During reallocation, the fund’s equity portion remains constant to maintain tracking error and factor exposure consistency. If 15% of a fund’s 85% equity allocation is excluded, it is 
proportionally redistributed across the remaining 70% while preserving the total equity allocation.
34 All prices are in US dollars.
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error change is not significantly increasing, likely due to 
the wide distribution of the initial tracking errors.

The impact of ESG exclusions on the tracking 
error, relative to both the initial index and bench-
mark, can be explained by sector and factor exposure 
deviations.

Sector deviations are most pronounced in Energy 
and Utilities across all regions and screens, with SDG 
screening also affecting the Non-Cyclical Consumer 
sector. These deviations stem from fossil-fuel exclusions 
and criteria related to the environment, human rights 
and ethical controversies. However, deviations do not 
scale linearly with excluded weight. For example, in 
Developed Europe, the PAB screen excludes 10% of 
weight with a 2.5% median sector deviation, while the 
SDG screen excludes 60% with only a 5% deviation. 
Positive sector deviations result from naïve reallocation, 
where sectors with higher initial weights experience the 
largest increases (Figure 4).

ESG exclusions tend to increase exposure to 
higher “profitability” stocks while reducing exposure 
to “investment” and “value” stocks across regions 
and screens. Excluded stocks are typically more 
exposed to “value” and “investment” factors and less 
to “profitability” than the overall index, shifting the 
screened index’s factor composition (Figure 5). These 
results align with Porteu de la Morandière et al. (2024) 
and are statistically significant, confirming a consistent 
impact on indexes.

Impact of ESG exclusions on the risk profile 
of indexes with optimized reallocation

The impact of ESG exclusions on index risk is lim-
ited for the Consensus and PAB screens under naïve 
reallocation, with median tracking errors of 0.9% 
(Developed Europe) and 1.5% (US). However, indexes 
heavily weighted in affected sectors can see tracking 
errors exceed 10%, particularly under the PAB screen 
(2% of Developed Europe and 3% of US indexes). The 
SDG screen has a greater effect, with a median tracking 
error of 4.7%.

Using the optimized reallocation method signifi-
cantly reduces the tracking error and factor deviations 
but does not always mitigate sector deviations. The 
ability to materially reduce factor exposure deviations 
is a particularly welcome benefit of the optimized 
reallocation method and aligns with Plagge (2023), 
who found no significant alphas from ESG exclusions 
once Fama and French (2015) factors were controlled. 
Investors with fiduciary duties may favor optimized 
reallocation for minimizing ESG exclusions’ impact on 
long-term expected returns.

For Developed Europe indexes, optimized reallo-
cation reduces tracking error by –0.3%35 (Consensus 
screen) and –1.6% (SDG screen) compared naïve real-
location (–0.5% to –1.4% for US indexes, Figure 6). The 
relationship between excluded weight and tracking 
error also weakens: with each 10% exclusion increas-
ing tracking error by 1.2% versus 1.5% under naïve 
reallocation. These reductions primarily stem from 
lower factor exposure deviations (Figure 7), while sector 
deviations remain largely unchanged.

Impact of ESG exclusions on the carbon footprint 
of indexes

Environmental exclusions tend to reduce port-
folio weighted average carbon footprint with naïve 
reallocation, but not necessarily with optimized 
reallocation.

Naïve reallocation under the Consensus and PAB 
screens reduces portfolio carbon footprint reduction 
consistent with their coal and fossil fuels exclusion 
criteria. For Developed Europe, reductions are 22% 
(Consensus) and 29% (PAB), while US reductions are 
30% and 54%. These reductions are mostly explained 

Impact of  ESG exclusions on sector deviations after naïve reallocation
Note: The purple bars represent the distribution mean, while black bars represent the standard error of 
the mean, calculated as the standard deviation divided by the square root of the sample size. This mea-
sures the dispersion of sample means around the population mean.
Source: Authors’ calculation.

FIGURE 4

Impact of  ESG exclusions on factor deviations after naïve reallocation
Note: The purple bars represent the distribution mean; black bars represent the standard error, calcu-
lated as the standard deviation divided by the square root of the sample size. This measures how sample 
means vary around the population mean.
Source: Authors’ calculation.

FIGURE 5

35 Median.
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Reduction in tracking error between optimized and naïve reallocation
Note: Annualized tracking errors of reallocated indexes versus initial indexes, using a Ledoit and Wolf 
(2003) normalized covariance matrix.
Source: Authors’ calculation.

FIGURE 6

Reduction in factor deviation between optimized and naïve reallocation
Note: Black bars represent the standard error of the mean, measuring sample mean dispersion around 
the population mean.
Source: Authors’ calculation.

FIGURE 7

by sector deviations (Energy and Utilities), which might 
not be the most efficient way to decarbonize indexes 
(Bouchet, 2023). For a “Transition” or “Solutions” 
investment strategy, this lever of exclusion should be 
supplemented by other allocation constraints designed 
to guarantee a minimum of sustainable exposure 
(Table 1).

The SDG screen does not significantly reduce carbon 
footprints (Figure 8). While it includes climate-related 
criteria like the PAB screen, its broader social and gov-
ernance exclusions also remove companies with very 
low carbon intensities, leading to inconsistent impact 
across indexes (Figure 8).

Optimized reallocation reduces the financial 
impact of ESG exclusions but results in a smaller car-
bon footprint reduction than naïve reallocation. For 
example, US indexes with the Consensus screen see 
a 30% carbon footprint reduction with the naïve real-
location but only 22% with the optimized reallocation. 
This occurs because optimized reallocation tends to 
replace excluded stocks by their closest equivalent 
in terms of risk profile, while the naïve scheme favors 
the largest capitalizations, which are in the Technology 
and Financials sectors, two sectors that have much 
lower carbon footprint than the benchmark average. 
Thus, optimized reallocation can increase exposure 
to carbon-intensive sectors. For example, 50% of the 
Developed Europe indexes screened with the PAB 
screen followed by an optimized reallocation are more 
exposed to the Energy sector than these indexes after 
a naïve reallocation.

CONCLUSION
Excluding stocks of companies involved in contro-

versial activities is common in sustainable investment 
strategies, but asset-owners must anticipate the finan-
cial impact of such exclusions. This article explores the 
effects of ESG exclusions on financial risks.

We propose three ESG exclusion screens with 
increasingly stringent criteria: the “Consensus” 
screen based on common asset-owner criteria; the 
“PAB” screen aligned with EU PAB standards; and the 
“SDG” screen tied to the UN’s 17 Sustainable Devel-
opment Goals. We analyze the impact of these ESG 
exclusion screens on tracking error, sector allocation, 
risk factor exposure, and carbon footprint across 493 
Developed Europe and US indexes. The analysis uses 
two reallocation methods: a naïve method based on 
initial weights, and an optimized method minimizing 
tracking error.

The three ESG screens result in excluded weights 
ranging from 10% to 70%, varying by screen and 
region. A naïve reallocation yields a median tracking 
error of 0.9% to 4.7%, with sector deviations mainly 
in Energy and Utilities. Exclusions increase exposure 
to “profitability” while slightly reducing “investment” 
and “value” factors. An optimized reallocation mate-
rially reduces tracking error and factor deviations, 
making it preferable for investors subject to fiduciary 
responsibilities per Plagge (2023). While naïve reallo-
cation systematically lowers carbon footprints, opti-
mized reallocation has no significant impact on carbon 
footprint reduction.

Exclusions based on consensus or net-zero criteria 
can have limited impact on financial risk, which can be 
further reduced with optimized reallocation. However, 
reducing carbon footprints require additional con-
straints to avoid unintended effects. Future research 
could explore the impact of sustainability measures 
beyond exclusions, such as reducing emissions or 
financing solutions aligned with sustainable develop-
ment goals, on index risk profiles.
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Reduction of  the carbon footprint of  screened indexes after the naïve reallocation by the 
weight of  stock excluded
Note: The Carbon Footprint of one index is the weighted sum of the equities carbon footprint. One equity 
carbon footprint is calculated based on company scope 1 and 2 emissions relative to enterprise value.
Source: Authors’ calculation.
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Understanding the drivers inf luencing greenhouse gas emissions in financial portfolios is crucial for constructing and monitoring climate investment strate-
gies. Several attribution frameworks have recently emerged to identify the drivers of portfolio decarbonization. This article (a summary of a recent research 
paper36) compares existing frameworks, exploring key drivers and methods to isolate their effects. Building on this review, a f lexible three-step model is 
formalized to integrate these drivers, and five specific models are developed to address climate-related questions. These models should help investors to 
better understand portfolio emissions changes and distinguish external factors from those they can directly inf luence.

•	 Since 2022, several attribution frameworks have emerged to help investors understand changes in emissions metrics—absolute emissions, intensity, 
and footprint—in financial portfolios.

•	 These frameworks classify the drivers into four main categories: data coverage, portfolio reallocation, economic and financial f luctuations, and com-
pany emissions. Two common attribution methods are Laspeyres indicators and the logarithmic mean Divisia index.

•	 The drivers are complementary and can be integrated into a f lexible three-step model to assess contributions from strategic asset allocation, divestment, 
sector shifts, stock selection, price volatility, emissions scopes, company activity, and inf lation.

INTRODUCTION
Asset owners can help mitigate climate change by 

reducing portfolio emissions. Regulatory and voluntary 
frameworks that define metrics, harmonize reporting 
standards, and align reduction targets with the Paris 
Agreement37 support these efforts. However, despite 
progress, investors still face challenges in controlling 
portfolio emissions.

Since 2022, attribution frameworks have emerged 
to clarify emissions drivers (Bouchet, 2023; NZAOA, 
2023; Nagy, Giese, and Wang, 2023; Simmons et al., 
2022). NZAOA (2023) highlights attribution analy-
sis as a tool for investors to take informed action via 
divestment, reallocation, engagement, or challenging 
asset managers. It also improves transparency in public 
reporting, aligning with Science Based Targets initiative 
(SBTi) recommendations SBTi (2023).

This article compares key attribution frameworks 
and explores how combining them can provide greater 
flexibility for investors.

The first section analyses attribution frameworks by 
portfolio type, emissions metric, key drivers, and attri-
bution method. Most assess absolute emissions, emis-
sions intensity, and footprint, with changes driven by 
data coverage, portfolio reallocation, economic shifts, 
and company emissions. Differences arise mainly in 
reallocation, with some models emphasizing invest-
ment universe changes and others sectoral shifts.

Emissions changes are attributed using either 
Laspeyres price and quantity indicators (commonly 
used in price index analysis) or the logarithmic mean 
Divisia index (LMDI), an environmental economics 
approach better suited for models with multiple drivers.

The comparative analysis finds that different frame-
works offer complementary insights. To enhance adapt-
ability, a flexible three-step model integrates these 
drivers. Applied to a fictitious four-company portfolio, it 
examines five climate-related questions, assessing asset 
allocation, divestment, stock selection, market volatility, 
emissions scopes, company activity, and inflation.

Attribution analysis helps investors distinguish 
between external factors (e.g., price volatility) and 
those they can influence (e.g., divestment, sector allo-
cation, stock selection). This makes it a key tool for 
building and monitoring climate investment strategies. 
The generalized model proposed enhances flexibility 
and implementation, adapting to investors’ needs.

REVIEW OF EXISTING ATTRIBUTION 
FRAMEWORKS

This section compares attribution frameworks by 
Simmons et al. (2022), Bouchet (2023), Nagy, Giese, 
and Wang (2023), and NZAOA (2023). These frame-
works vary in portfolio types, emissions metrics, iden-
tified drivers, and methods used to attribute changes 
in emissions.

Portfolios, metrics, and type of analysis
The portfolio’s asset class determines the appro-

priate emissions metrics, varying by instrument type: 
listed, debt, equity, company, project, real estate, or 
sovereign. Attribution frameworks primarily focus on 
equity portfolios, particularly benchmarks or indexes 
(Table 1).

Existing attribution frameworks analyze three com-
plementary emissions metrics: absolute emissions, emis-
sions intensity, and emissions footprint. These cover 
Scope 1 (direct emissions), Scope 2 (indirect emissions 
from energy use), and Scope 3 (indirect value chain emis-
sions). Scope 3 inclusion remains debated due to scale 
and methodological challenges (Ducoulombier, 2021, 
2024). The second section explores how attribution anal-
ysis disentangles the contributions of each scope.

Review of  existing portfolios, metrics and types of  analysis

Framework Portfolio Analyzed Metrics Type of 
Analysis

Simmons et al. 
(2022)

Equity benchmark (FTSE All-World 
Index)

Emissions intensity Historical

Bouchet (2023) Equity index (climate impact index) Absolute emissions
Emissions intensity

Cross-sectional
Historical

Nagy, Giese, and 
Wang (2023)

Equity benchmark (MSCI ACWI 
Investable Market Index)
Exchange-traded fund (ETF) 
(US minimum-volatility ETF)

Absolute emissions
Emissions intensity
Emissions footprint

Historical

NZAOA (2023) (listed) corporates bonds and 
equity portfolio

Absolute emissions
Emissions intensity
Emissions footprint

Historical

TABLE 1

36 Bouchet, V. (2025). Attribution Analysis of Equity Portfolio Emissions: Examining and Integrating Existing Frameworks. Scientific Portfolio Publication. https://scientificportfolio.com/
pdfs/2024-11-attribution-analysis-of-ghg-emissions-associated-with-an-equity-portfolio.pdf.
37 EU climate transition and Paris-aligned benchmarks delegated regulation, target setting protocol of the Net-Zero Asset Owner Alliance, net-zero investment framework of the Paris 
Aligned Investment Initiative.

mailto:vincent.bouchet@scientificportfolio.com
https://scientificportfolio.com/pdfs/2024-11-attribution-analysis-of-ghg-emissions-associated-with-an-equity-portfolio.pdf
https://scientificportfolio.com/pdfs/2024-11-attribution-analysis-of-ghg-emissions-associated-with-an-equity-portfolio.pdf
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Most attribution frameworks analyze portfolios over 
time, crucial for assessing contributions to emissions 
reduction targets. Cross-sectional analysis can sup-
plement this by comparing two portfolios at a given 
moment.

Drivers that explain change in an emissions metric
The drivers in existing frameworks vary depend-

ing on whether the metric is absolute emissions or 
intensity-based, but they generally fall into four cat-
egories (Table 2). The first relates to data coverage, 
where emissions may change due to variations in data 
availability. Methodological changes, especially for 
Scope 3, also fall into this category.

The second category, portfolio reallocation, 
includes buy and sell decisions affecting portfolio com-
position. These shifts are captured through changes in 

instrument weight—driven by transactions and financial 
fluctuations—and the portfolio’s share of a company, 
which only changes through transactions. Bouchet 
(2023) further differentiates between sector allocation 
and stock selection drivers.

The third category concerns economic and finan-
cial fluctuations. Variations in enterprise value, includ-
ing cash (EVIC), particularly in the equity component, 
affect financial structure (equity vs. debt) and portfolio 
emissions. Since these factors are largely external to 
investors, isolating their effects is key to identifying 
investor-driven emission reductions.

The final category relates to company emissions, 
which fluctuate due to changes in emissions intensity or 
revenue. However, revenue changes may not accurately 
reflect production efficiency gains, warranting the inclu-
sion of an inflation driver.

Methods of attribution
Two main methods are used to attribute changes 

in emissions metrics to driver: the Laspeyres and LMDI 
methods. Let Mp represent an emission metric at 
portfolio level which can be expressed as the sum for J 
instruments of a product of N variables (drivers):
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where Mj represents the contribution of instrument j to 
the portfolio metric, and Dn,j represents the contribu-
tion of driver n to Mj.

The goal of an attribution method is to express the 
change from Mp

t0 to Mp
t1 as an additive38 decomposition 

of effects EDn
 corresponding to each driver Dn.

Drivers in existing attribution frameworks
Notes: Various frameworks use different terms for key drivers.

a) Analysis of Change in Absolute Emissions

Driver Type Driver Bouchet  
(2023)

Nagy, Giese, and 
Wang (2023)

NZAOA  
(2023)

Data coverage Data coverage X X

Portfolio reallocation (buy/sell decisions) New positions X X

Deleted positions X X

Financing share X

Portfolio reallocation (buy/sell decisions) 
and/or financial fluctuations

Sector weight X

Instrument weight within sector X

Financing value X

Portfolio AUM X

Financial and economic fluctuations Financing structure X

EVIC X X

Revenue X

Financial and economic fluctuations 
and/or Company emissions

Emissions intensity X

Company emissions Emissions X X

b) Analysis of Change in Emissions Intensity or Footprint

Driver Type Driver Simmons 
et al. (2022)

Bouchet  
(2023)

Nagy, Giese, and 
Wang (2023)

NZAOA  
(2023)

Data coverage Data coverage X X

Portfolio reallocation (buy/sell decisions) New positions X X X

Deleted positions X X X

Portfolio reallocation (buy/sell decisions) 
and/or financial fluctuations

Sector weight X

Instrument weight within sector X

Instrument weight within portfolio X X X

Financial and economic fluctuations Revenue X X X

Financial and economic fluctuations 
and/or Company emissions

Emissions intensity X

Company emissions Emissions X X X

TABLE 2

38 While it is less common in the existing attribution frameworks, the attribution can also be multiplicative. In this case, the change in the emissions metric is expressed as follows: 
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M
M

E E E
t

t D x Dn

1

0 1 2
� � .



A SUPPLEMENT TO PENSIONS & INVESTMENTS
Research for Institutional Money Management 29

	
M M M E E Ep

t
p
t

p D D Dn N

1 0
1

� � � � ����

Nagy, Giese, and Wang (2023) and NZAOA (2023) 
use a method based on Laspeyres (1871) price and 
quantity indicators, commonly used to analyze changes 
in price indexes. This method is analogous to decom-
position framework for a portfolio’s financial perfor-
mance (Brinson and Fachler, 1985; Brinson, Hood, and 
Beebower, 1986). The case of two drivers illustrates this 
method:
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where I D D∆ ∆1 2,  is an interaction term between the two 
variations ∆D1 and ∆D2. One limitation of this method 
is the difficulty in interpreting the interaction terms. 
Simmons et al. (2022) and Bouchet (2023) rely on 
Divisia index, commonly used environmental econom-
ics (Ang, Zhang and Choi, 1998). As developed in Ang 
(2015), the additional effects of the driver Dn is given by:
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Driver effects using Laspeyres are easier to interpret 
by isolating their impact while holding others constant. 
But it lacks symmetry – analyzing t0 to t1 versus t1 to t0 
yields different results. As more drivers are considered, 
interaction terms increase. These can be eliminated 
using the average method, but the results remain 
sensitive to the order of decomposition. For example, 
decomposing Mj = D1.D2.D3 differs from Mj = D3.D2.D1.

LMDI eliminates interaction terms, is symmetrical, 
and is not sensitive driver order, though the effects 
calculated using LMDI are more complex to interpret 
due to logarithms, and handling zero values requires 
attention.

Laspeyres is recommended for models with two 
drivers, while LMDI is preferable for models with more.

MODEL AND DATA
Attribution frameworks provide complementary 

insights into portfolio emissions by analysing different 
drivers. This section introduces a flexible model inte-
grating these drivers, using a fictitious portfolio as its 
basis.

A flexible model to combine drivers
The model consists of three steps.

Step 1: Defining groups of financial instruments 
with the portfolio

Let  represent the set of all portfolio instruments. 
The first step defines disjoint subsets k within  to iso-
late contributions as drivers (e.g., divested instruments 
or sectors-specific groups).
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with  k l� �� for all k ≠ l, and K is the number of 
subsets.

Effects of asset class and sector allocation 
on portfolio absolute emissions

To assess the impact of asset class (equity vs. debt) 
and sector40 (brown vs. green), on absolute emissions 
changes, an initial model applies only the first step—
defining disjoint portfolio subsets. This analysis reveals 
that most reductions in the fictitious portfolio stem from 
equity divestments in the brown sector (Figure 1).

Effects of divestment and reallocation  
on absolute emissions

It is essential to determine whether the reduction 
stems from divestment, reallocations within the brown 
sector, or reductions in emissions.

A second model assesses divestment impacts and 
the effects of purchases or sales, financial fluctuations 
(price volatility and financial structure), and emissions of 
remaining instruments.

For the fictitious portfolio, divestment accounts 
for most of the absolute emissions reduction, while 
reallocations and financial fluctuations have mini-
mal impact. In contrast, company emissions increase 
overall (Figure 2). From an extra-financial perspective, 
this model raises concerns, as company emissions 
rise despite the portfolio’s emissions decline. Since 
divestment drives much of the reduction, ensuring its 
sustainability justification is crucial.41 If the exclusion list 
is valid, the effect of legitimate divestments should be 
decomposed from other divestments.42

Effects of divestment and reallocation on emissions 
intensity

If absolute emissions have risen, this may be due to 
increased emissions intensity or company activity, such 
as market share growth. One approach to addressing 
this is by analyzing portfolio emissions intensity, which 
can change due to shifts in instrument weights or com-
pany emissions intensity. Weight fluctuations result 
from buy/sell decisions or price changes.

Unlike absolute emissions, portfolio and firm emis-
sions intensity is declining,43 indicating that the rise in 
absolute emissions was mainly due to increased activity 
(revenue) (Figure 3). The effects of other drivers align 
with the absolute emissions analysis: divestment – 
isolated here but potentially part of the quantity effect – 
remains the primary factor, followed by a slight upward 

Step 2: Choosing drivers
The second step defines a set of Nk drivers whose 

product equals the instrument contribution to the emis-
sions metric39 Mp,t .
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These factors can differ depending on the subset. 
In the case of absolute emissions, we might be only 
interested by the absolute emissions associated with an 
instrument for the subset ‘divested assets’ but by more 
drivers for the other instruments.
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Step 3: Choosing an attribution method
The third step is to choose an attribution method, 

to determine the effect of any driver Dn, between the 
Laspeyres method (with and without interaction terms) 
and the LMDI method (Table 3).

Fictitious portfolio and companies
A portfolio of four financial instruments, covering 

equity and debt from four fictitious companies, is 
analyzed over one period (t0 to t1). Two compa-
nies belong to a carbon-intensive (“brown”) sector 
(BS) and two to a low-carbon (“green”) sector (GS), 
with one high-intensity (HI) and one low-intensity 
(LI) firm in each. Tables 4 and 5 detail changes 
in company variables and portfolio reallocation. 
Over the period, absolute emissions decrease from 
19,677 tCO2e to 14,945 tCO2e, while emissions 
intensity decreases from 295.0 tCO2e/MUSD to 
181.2 tCO2e/MUSD.

RESULTS
This section refines the flexible model to address 

key questions related to three of the four driver 
categories (Table 6). Since these models often require 
more than three drivers, the LMDI method is used 
for attribution, though the other methods remain 
applicable.

Effect calculation for three attribution methods
Notes: As discussed earlier, for Dn, (the financial weight driver), the initial portfolio emissions metric 
(intensity or footprint) can be subtracted, regardless of the method used.

Method Formula for EDn
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TABLE 3

39 Absolute emissions, emissions intensity, or emissions footprint.
40 We use a simplified binary classification here, though climate-specific classifications can be applied.
41 Either due to the company’s involvement in controversial activities or an unsuccessful engagement campaign.
42 In this case, the ‘divestment’ effect will be decomposed as: � �j j

p
jDivested instruments Divested instruments in li

E� ��  sst Divested instruments not in list
E Ej

p
j j

p� ��  .
43 This results from BS-LI maintaining a constant intensity, while GS-HI and GS-LI show decreasing intensities.
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Changes in a multi-asset portfolio
Notation: N = instrument quantity, PI = price per instrument, w = financial weight in portfolio, ws = sector weight, wis = instrument’s financial weight in sector 
(wis = w/ws). Scenario: The portfolio manager fully divests from BS-HI, reduces BS-LI exposure, and reallocates to GS-HI debt instruments.

Instrument Unit BS-HI BS-LI GS-HI GS-LI

Type of instrument Equity Equity Debt Debt

Nj,0 10,000 30,000 30,000 30,000

Nj,1 0.0 19,384 63,000 25,200

PIj,t0 USD 1,000 1,000 1,000 1,000

PIj,t1 USD 1,200 1,300 – 1,500

wj,0 % 10.0% 30.0% 30.0% 30.0%

wj,1 % 0.0% 20.0% 50.0% 30.0%

ws(i( j )),t0 % 40.0% 40.0% 60.0% 60.0%

ws(i( j )),t1 % 20.0% 20.0% 80.0% 80.0%

wis(i( j )),t0 % 25.0% 75.0% 50.0% 50.0%

wis(i( j )),t1 % 0.0% 100.0% 62.5% 37.5%

TABLE 5

Changes in company variables
Notation: E1 = direction emissions (Scope 1), E2 = direct emissions from electricity (Scope 2), P = physical production (tons), R = revenue, QE = quantity of equity 
instruments, PE = equity price, QD = debt quantity, PD = debt price, EVIC = enterprise value including cash. Scenario: BS-LI’s direct emissions double (100%) (a) while 
revenue rises 50% (c). Indirect emissions from electricity fall 50% (b). Equity prices increase 20–50% (d), raising EVIC. GS-LI’s EVIC also rises due to debt issuance (e).

Company (i ) Sector Unit BS-HI BS-LI GS-HI GS-LI

i ∈ Sbrown i ∈ Sbrown i ∈ Sgreen i ∈ Sgreen

Emissions and 
economic activity

E1i,t0 (tCO2e) 75,000,000 25,000,000 15,000,000 5,000,000

E1i,t1 (tCO2e) – 50,000,000 (a) – –

E2i,t0 (tCO2e) 25,000,000 12,500,000 5,000,000 2,500,000

E2i,t1 (tCO2e) 12,500,000 (b) 6,250,000 (b) 2,500,000 (b) 1,250,000 (b)

Pi,t0 t 100 100 100 100

Pi,t1 t – – – –

Ri,t0 (MUSD) 100,000 100,000 100,000 100,000

Ri,t1 (MUSD) – 150,000 (c) – –

Financing structure QEi,t0 100,000,000 100,000,000 100,000,000 100,000,000

QEi,t1 – – – –

PEi,t0 (USD) 1,000 1,000 1,000 1,000

PEi,t1 (USD) 1,200 (d) 1,300 (d) 1,300 (d) 1,500 (d)

QDi,t0 – 50,000,000 50,000,000 50,000,000 50,000,000

QDi,t1 – – – – 100,000,000

PDi,t0 1,000 1,000 1,000 1,000

PDi,t0 – – – –

EVICi,t0 (MUSD) 150,000 150,000 150,000 150,000

EVICi,t1 (MUSD) 170,000 180,000 180,000 250,000 (e)

TABLE 4
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impact from buy/sell decisions, while price fluctuations 
help reduce intensity.

Effects of sector allocation and stock selection 
on emissions intensity

The initial absolute emissions model identified sec-
tor contributions but did not clarify whether reductions 

resulted from decreased sector exposure or intra-sector 
reallocations. This fourth model separates sector alloca-
tion from stock selection while isolating the divestment 
effect, focusing only on remaining instruments44 
(Figure 4a). In a context of significant price fluctuations, 
adjustments further distinguish the effects of quantity 
and price changes on these weights (Figure 4b).

Even after accounting for divestment, the 
portfolio’s intensity reduction is mainly driven by 
sector allocation, shifting from brown to green 
sectors. However, stock selection within sectors 
increases intensity, as GS-HI’s weight rises relative to 
GS-LI. From a climate impact perspective, sector allo-
cation may artificially reduce emissions by lowering 

Attribution of  change in absolute emissions by asset class and sector
Notes: Analysis of a fictitious portfolio using LMDI.

FIGURE 1

44 A driver capturing the weight change of remaining instruments relative to divested ones is introduced, isolating sector allocation and stock selection effects for retained stocks. Without 
this, BS-LI’s sector allocation effect would be skewed by BS-HI’s exclusion. 
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What is the contribution of sector allocation and stock selection?
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What is the contribution of sector inflation and emissions scopes?
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where Prodi(j ) is the physical production (expressed in tonnes in 
our example) of the company, E1i(j) the company emissions on 
Scope 1, and E2i(j ) on Scope 2.

TABLE 6
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However, monetary intensity is inflation sensitive. 
Adjusting for inflation clarifies whether intensity 
changes stem from production efficiency or inflation 
effects.46 Specific drivers are also introduced for each 
emissions scope.

This last model finds inflation significantly 
reduced emissions intensity (per revenue), while 
physical intensity (e.g., CO2 per ton of steel) rose. 

exposure to high-emission sectors and should not be 
prioritized.45

Effects of company emissions and inflation 
on emissions intensity

The first two models showed rising company 
emissions, with the third linking this to revenue 
growth, while emissions intensity declined slightly. 

Attribution of  change in absolute emissions by divestment, reallocation, financial fluctuations, and company emissions
Notes: Analysis of a fictitious portfolio using the LMDI method.

FIGURE 2

Attribution of  change in intensity per revenue by divestment, allocation, price fluctuations, and company intensity
Notes: Analysis of a fictitious portfolio using LMDI.

FIGURE 3

The decline in physical intensity is mainly from 
Scope 2 emissions, whereas Scope 1 emissions 
increased (Figure 5). Since companies cannot con-
trol the local electricity mix, they have more leverage 
over Scope 1 emissions tied to operations. Differen-
tiating production efficiency, inflation, and emissions 
scopes helps portfolio managers refine engagement 
strategies.

45 The IIGCC (2023) recommends that net-zero benchmarks prioritise real-world ‘organic’ decarbonisation over ‘paper’ decarbonisation and supports a sectoral approach.
46 In our example, we use individual company production data. When unavailable, company revenues can be adjusted using a sectoral inflation factor. 
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Reconciling the absolute emissions, intensity 
and footprint emissions metrics

The attribution models have been used to analyze 
different portfolio emissions, demonstrating the flex-
ibility of the generalization approach. Depending on 
the context, certain metrics may be more relevant 
than others. A key advantage of attribution analysis is 
its ability to explicitly link these metrics. Specifically, 
absolute portfolio emissions can be expressed in 
terms of intensity and footprint metrics. As presented 
before:

	

E Ep
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Absolute emissions associated with instrument j

��
     ( )



Absolute emissions for each instrument can be cal-
culated as the product of the portfolio value and the 
carbon footprint of the associated company.
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Attribution of  change in intensity per revenue by divestment, sector allocation, stock selection, and company intensity
Notes: Analysis of a fictitious portfolio using LMDI.

a) No price adjustment of ‘sector allocation’ and ‘stock selection’ drivers

b) Price adjustment of ‘sector allocation’ and ‘stock selection’ drivers

FIGURE 4

Company emissions can be expressed as the prod-
uct of the company’s emissions intensity and revenue.
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Using this model, all drivers influencing absolute emis-
sions, emissions intensity, and footprint become visible, 
allowing for a unified analysis of each metric’s evolution.
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three-step model integrates them, allowing investors to 
assess the impact of asset class allocation, divestment, 
sector allocation, stock selection, price volatility, emis-
sions scopes, company activity, and inflation on portfo-
lio emissions metrics.

By integrating drivers from existing frameworks, 
investors can better identify emissions changes, distin-
guishing between exogenous factors and those they 
can influence, either directly (e.g., allocation, divest-
ment, stock selection) or indirectly (e.g., corporate 
emissions through engagement). Attribution analysis is 
thus critical for constructing and monitoring a climate 
investment strategy.

Adjusting the portfolio’s emissions footprint for 
EVIC inflation alters the EVIC driver’s attribution results 
but leaves the effects of key investor-driven factors 
unchanged. Applying an inflation adjustment to the 
emissions footprint or using a model with an EVIC 
driver accounts for financial instrument price inflation, 
but combining both methods adds no further value.

CONCLUSION
Since 2022, several attribution frameworks have 

emerged to clarify the emissions drivers in financial 
portfolios. This article examines their key differences 
and explores how they can be effectively combined.

Most frameworks focus on historical analysis of 
absolute emissions, emissions intensity, and equity 
portfolio emissions. Their identified drivers fall into 
four categories: data coverage, portfolio reallocation, 
economic and financial fluctuations, and company 
emissions.

Two methods attribute changes in emissions met-
rics: the Laspeyres indicators and the logarithmic mean 
Divisia index (LMDI) Laspeyres is preferred for two-
driver models, while LMDI is better for multiple drivers, 
as it eliminates interaction terms.

The drivers in these frameworks complement 
each other rather than serve as substitutes. A flexible 

Attribution of  change in intensity by allocation, inflation, and scope
Notes: Analysis of a fictitious portfolio using LMDI.

FIGURE 5
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