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INTRODUCTION
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am delighted to introduce the latest Scientific Portfolio special issue of the EDHEC Research for Institutional
Money Management supplement to P&l, which aims to provide institutional investors with an academic
research perspective on the most relevant issues in the industry today.

We first look at the benefits of risk-based diversification for equity investors. Diversification benefits can
be achieved while maintaining the level of active risk, an important feature for investors seeking to both fully
utilize their active risk budget and manage extreme losses, and risk-based diversification is achievable without
reducing expected long-term returns.

We then examine climate transition risks in portfolio management by introducing a model that integrates
firm-specific ‘green’ revenues, aligned with the European taxonomy. The analysis highlights three main results:
revenue impacts are as influential as carbon pricing in shaping transition risks; effects vary within sectors, with
some firms benefiting under ambitious transition scenarios; and socio-economic uncertainty strongly influ-
ences loss estimates.

We examine the informational overlap between environmental, social, and governance (ESG) scores and
ESG exclusionary screening strategies within equity portfolios. While ESG scores are widely used for integrat-
ing sustainability considerations in portfolio management, they may not fully align with exclusion criteria tar-
geting companies engaged in controversial activities or behavior. By comparing the results of both approaches
on a set of 417 indexes, the analysis reveals that reliance on ESG scores alone omits a substantial proportion
of companies that fail to meet “do no harm” criteria.

Exclusion/negative screening is the most popular methodology used to integrate ESG criteria into invest-
ment strategies. We examine the impact of exclusion policies on the financial risks of 493 indexes from Devel-
oped Europe and the US. To address varying ESG criteria, we built three screens: one based on consensual
criteria among asset owners, another incorporating additional climate criteria, and a third eliminating com-
panies negatively impacting any United Nations sustainable development goal. The first two screens show
limited impact on index risks, especially when using optimized reallocation.

Finally, understanding the drivers influencing greenhouse gas emissions in financial portfolios is crucial for
constructing and monitoring climate investment strategies. We compare existing frameworks for identifying
the drivers of portfolio decarbonization, exploring key drivers and methods to isolate their effects. Building
on this review, a flexible three-step model is formalized to integrate these drivers, and five specific models are
developed to address climate-related questions.

We hope that the articles in the supplement will prove useful, informative, and insightful. We wish you an
enjoyable read and extend our warmest thanks to P&l for their collaboration on the supplement.
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e Diversification, especially when based on risk contributions, reduces the likelihood of extreme losses, making it a practical tool for risk management.

e The marginal benefits of diversification are diminishing: adding more diversification to an already diversified portfolio does not significantly improve

extreme risks.

e Diversification benefits can be achieved while maintaining the level of active risk,! an important feature for investors seeking to both fully utilize their

active risk budget and manage extreme losses.

e Risk-based diversification is achievable without reducing expected long-term returns.

INTRODUCTION
The benefits of diversification for managing risk

have been known since the 18th century (Bernoulli,

1738). At its core, diversification is a risk mitigation

mechanism consisting in spreading capital across

different investments to avoid the co-occurrence of
losses. In equity portfolios, there are essentially two
approaches to diversification. The first relies on the dis-
tribution of weights, either at the stock or sector level

(e.g., (Kacperczyk, Sialm, and Zheng, 2005; Brands,

Brown, and Gallagher, 2005)). The second focuses on

the diversification of risks (e.g., Meucci, 2009).

Despite its theoretical appeal for portfolio construc-
tion (Asness, Frazzini, and Pedersen, 2012; Bhansali
et al., 2012), the impact of risk-based diversification on
portfolio performance and extreme risk remains under-
explored. This gap arises partly because the concepts
of diversification and risk are often amalgamated due
to the role that correlation plays in connecting both
notions. However, risk and diversification are not the
same: portfolios with similar risk levels can exhibit dif-
ferent levels of diversification, influencing performance
and vulnerability to extreme losses.

We address this gap by analyzing how holdings-
based and risk-based active diversification (i.e., in
excess of a benchmark) affect equity portfolios in terms
of active risk and extreme risk, as measured by the
expected shortfall (CVaR), and performance expecta-
tions. Beyond providing an accurate empirical analysis
using a large sample of US equity funds, we employ a
novel approach based on the generation of portfolios
with identical risk levels, so-called iso-risk portfolios,
to isolate diversification effects while controlling for
risk and holdings concentration. This approach allows
deeper insights than would normally be possible using
the available empirical sample alone.

Our research highlights the following three key
points:

e Empirical Analysis: We find that active? funds-
defined as funds materially deviating from the
market cap-weighted benchmark—concentrate risks
in a few factors, typically Size and Value, and that

extreme risk (95% CVaR) is mitigated when increas-
ing diversification of risks or sector holdings but is
not impacted by the level of exposure-based or
stock-level concentration. These effects are robust
to alternative definitions of extreme risk, such as
maximum drawdown. We also find decreasing mar-
ginal effects: while diversifying a portfolio’s risk can
reduce by as much as 20% the probability of having
a large CVaR for concentrated funds, the effect pla-
teaus and is negligible for already well-diversified
funds. Hence, investors do not need to fully maxi-
mize diversification to reap its full benefits in terms
of reduction of bad performance surprises.

¢ Iso-Risk Portfolios: Our unique dataset of iso-risk
portfolios demonstrates that risk-based diversifica-
tion allows a risk budget to be managed efficiently:
its benefits can be achieved regardless of the start-
ing risk level, suggesting that investors can diversify
without necessarily reducing their target active risk.
While controlling for the effect of risk and holdings
concentration, we find that risk-based diversification
has stronger mitigating effects than sector-based
measures. The marginal impact depends on current
diversification levels, not risk levels.

e Performance Impact: Diversification, whether risk-
or sector-based, does not significantly affect long-
term expected returns. This result, combined with
the previous insight, i.e., additional diversification
does not require the risk level to change, makes
diversification a powerful and complementary tool
for active managers with discretionary views on
future returns.

DATA AND METHODOLOGY

We begin with a cross-sectional analysis of 476 U.S.
equity mutual funds from the Morningstar database,
covering January 2019 to December 2023. These funds
collectively invest in over 1,900 individual stocks, offer-
ing a wide variety of risk profiles and compositions.
To further enhance the analysis, in a second step we
generate 39,400 randomized portfolios using the iso-
risk methodology described later starting from daily

return data. Funds included in the sample are active,
meaning they meaningfully depart from the benchmark
(minimum tracking error of 2%), and have a model R?
of at least 0.80, to guarantee reliability of the statistics
derived from the risk model.

RISK FACTOR EXPOSURES AND EXTREME RISK

Risk-based diversification relies on a risk model.
We employ the (Fama and French, 2015) 5-factor
model (Market excess return, Size, Value, Profitabil-
ity and Investment) plus the Momentum from Carhart
(1997) and the betting against beta factor (BAB) from
Frazzini and Pedersen (2014), henceforth referred to
as Volatility.® Factor loadings are estimated using five
years of historical data (Jan 2019-Dec 2023), and the
market factor serves as the benchmark for active returns
and risks.

Active extreme risk is measured as the 95% active
conditional Value-at-Risk (CVaR) based on daily returns.
To maintain consistency across instruments, we use
model-implied returns and apply the Cornish-Fisher
expansion methodology from Mark and Vaucher (2023),
which provides more robust and reliable estimates
compared to historical CVaR (Pritsker, 2006). Instrument
betas and extreme risk estimates are calculated using
daily data from the same five-year period. Robustness
tests show that results remain unchanged extending the
estimation window to 20 years.

DIVERSIFICATION MEASURES
Portfolio theory often considers a portfolio well
diversified if it achieves the highest reward per unit of
risk. However, since expected returns are difficult to
estimate (Merton, 1980), portfolio managers prefer to
focus on more heuristic definitions that capture the idea
of spreading risk across different assets (Martellini and
Milhau, 2018). In line with this approach, the analysis
employs four diversification measures: two based on
holdings and two on risk.
¢ Holding-Based Diversification One of the most
classical concentration measures is the con-
centration of weights. It is measured using the

! Also known as tracking error and defined as the standard deviation of returns relative to a given benchmark. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5095454.
2 We focus on active portfolios; hence the discussion involves active diversification and risk measures.
3 We thank AQR Capital Management for BAB data (https://www.aqr.com/Insights/Datasets/Betting-Against-Beta-Equity-Factors-Monthly) and Kenneth French for the other risk factors
(https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).
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Herfindahl-Hirschman index (HHI), which corre-
sponds to the sum of squared portfolio weights
using either stock-level and sector-level holdings
(e.g., Brands, Brown, and Gallagher, 2005). When
employed to assess active diversification, weight
concentration becomes cumbersome to interpret
for small active weights. To address this issue, we
define the active holding diversification (AHD) and
active sector diversification (ASD) as the inverse
active HHI (with active stock and sector weights,
respectively) normalized by the squared sum of
their active capital, as explained in Bagnara and
Vaucher (2024).

* Risk-Based Diversification is measured using active
factor diversification (AFD) and active risk diversi-
fication (ARD). AFD is a concentration measure
that uses active risk exposures (betas) instead of
weights. On the other hand, the ARD uses active
risk factor contributions summing to the portfolio’s
active risk (Bagnara and Vaucher, 2024). Portfolios
with well-distributed exposures across risk drivers
exhibit higher AFD, with AFD = 7 indicating max-
imum factor diversification (equal exposure across
all seven factors). Analogously, ARD reaches its
maximum of 7, when total active risk is evenly dis-
tributed among risk factors.* ARD captures the
effective number of active bets, where diversifica-
tion is evaluated in terms of risk contributions rather
than just exposures.

In the last part of the analysis, we use the Factor
Intensity (FI), which represents total active exposure to
risk factors relative to the market. Fl is proportional to
the funds’ performance expectations, when assuming
that in the long run the risk premium of all factors is the
same, as we explain later.

ISO-RISK PORTFOLIO ROTATIONS

Statistical studies on the relationship between port-
folio characteristics and diversification often face lim-
itations due to small sample sizes. Traditional methods
like conditional double sorts, e.g., on diversification
and extreme risk, become impractical when empirical
data is limited.

To overcome this, we use the iso-risk portfolio
rotation method, which generates a large number
of alternative portfolios with identical active risk and
weight concentration as existing stock portfolios. This
approach allows us to significantly expand the sam-
ple and analyze the relationship between diversifica-
tion and performance for any given level of risk. For
a detailed explanation of this technique and its imple-
mentation, we refer interested readers to Vaucher and
Bagnara (2024b).

LONG-TERM PERFORMANCE

Imposing diversification on an otherwise uncon-
strained portfolio may give rise to a cost in terms of per-
formance, as it may force the active portfolio manager
to reallocate capital from stocks where she has an infor-
mational advantage to a broader set of investments.
In other words, increasing diversification reduces the
transfer coefficient and with this also the expected
value added by active management. Estimating this
cost empirically is challenging, as it requires a number
of assumptions about investors’ priors and beliefs.

Our expanded portfolio sample with controlled
risk levels offers a unique opportunity to examine the
relationship between diversification and performance.
Unlike much of the existing literature, our approach

does not rely on historical performance. Instead, we
simply assume that over the long term, all risk premia
are expected to converge to the same value. Under
this assumption, which provides an agnostic perspec-
tive on factor rewards, and no arbitrage, the long-term
expected return of an asset in a linear factor model is its
factor intensity Fl scaled by the expected risk premium.
Consequently, we focus on the cross-sectional variation
in FI to explore the relationship between diversification
and long-term performance, independently of the his-
torical sample.> This agnostic approach is particularly
valuable, as previous studies on risk-based diversifica-
tion and performance often yield sample-dependent
results (Chaves et al., 2011).

RESULTS

Stylized facts about diversification

Table 1 presents descriptive statistics for the diversi-
fication measures, along with active annualized risk (TE)
and active daily 95% CVaR, which assesses tail risk at
the daily frequency. CVaR, referred to as extreme risk,
is always measured relative to the benchmark and in
absolute values, with higher levels indicating greater
potential losses.

The median ARD is 2.04, indicating that most funds
spread active risk across only two factors. Only about
20% achieve ARD above 3. The median AFD is even
lower at 1, with just 10% of funds diversifying across
more than two factors. These findings reflect the
under-diversification documented in Uppal and Wang
(2003) and Han et al. (2024). Holdings-based measures
(AHD, ASD) show less skewed distributions, with the
average fund actively investing in 117 stocks and about
5 sectors.
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To identify in which few factors funds are mostly
concentrated, we compare the top and bottom 20% of
funds for each measure. ARD- and ASD-concentrated
funds have higher exposures to Size (average about
0.45 and 0.25) and Value (about 0.1 for both) compared
to the most diversified group, which shows near-zero
exposures on average. In contrast, funds ranked by
AFD and AHD display higher exposures to Size and
Value as diversification increases.

DIVERSIFICATION AND EXTREME RISK

As a risk-mitigating tool, diversification aims to
reduce large losses. To test this hypothesis, we regress
CVaR on various diversification measures according to
the following specifications, using standardized data for
comparability:

CVaR; = o + B1ARD; + ¢;

CVaR; =a + BAFD; +¢;

CVaR; = a + BAHD; + ¢;

CVaR; =a + B1ASD; + ¢;

CVaR; = o + BARD; + BAFD; + B AHD;
+BASD; + ¢

Comparing several specifications with each other
allows us to verify the stability of the association
between variables controlling for other diversification
metrics. Results are reported in Table 2.

ARD strongly reduces tail risk: an increase of one
standard deviation (0.89) leads to a reduction of 0.45
standard deviations of CVaR.® Notably, ARD alone
explains about 20% of the variation in CVaR, highlight-
ing the strong relationship between extreme risk and
diversification. Sector-based diversification has a simi-
lar effect, with a coefficient of -0.42. Other measures

[ [ TABLE 1

—

\

N

Diversification measures: descriptives
Note: Descriptive statistics for active risk diversification (ARD), active factor diversification (AFD),
(normalized) active holding diversification (AHD) and (normalized) active sector diversification (ASD),
active annualized risk (TE) and active daily CVaR in %. US funds, 2019-2023.

ARD AFD AHD ASD TE (%) CVaR (%)
N 476 476 476 476 476 476
mean 2.28 1.09 116.68 4.52 7.05 1.03
std 0.89 0.76 43.37 1.07 3.19 0.46
min 0.83 0 20.97 3.12 2 0.28
1% 0.98 0.01 30.3 3.16 2.08 0.31
5% 1.17 0.05 54.59 3.38 2.41 0.36
10% 1.32 0.12 65.59 3.46 3.01 0.46
25% 1.64 0.4 85.5 3.74 4.73 0.71
50% 2.04 1 110.4 413 6.61 0.97
75% 2.85 1.73 142.74 5.06 9.17 1.33
90% 3.62 2.1 188 6.32 11.72 1.69
95% 3.95 2.29 196.66 6.67 12.88 1.85
99% 4.65 2.86 209.57 7.55 14.49 2.08
max 5.02 3.27 218.47 7.8 15.63 2.25

4 An alternative measure of risk-based diversification it the effective number of bets, or ENB (Meucci, 2009; Martellini and Milhau, 2018).
%> Alternatively, one can assume that in the long run risk factors share the same reward-to-risk ratio (Sharpe Ratio, SR) instead of the same risk premia. In this case, the expected return of
an asset equals this common SR times a weighted factor intensity, where weights are determined by the relation between the volatilities of risk factors. Results under this assumption that

analyze the impact of diversification on SR instead of expected returns, are practically unchanged, and are available upon request.
6 Herzog et al. (2023) find that ARD helps stabilize active risk by reducing the standard deviation of tracking error. Since CVaR can be seen as a function of high-order moments such as
kurtosis (e.g., Mark and Vaucher, 2023), our results confirm and generalize what they previously documented.
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of diversification, on the other hand, have a positive
and significant coefficient, meaning that they may even
induce an increase in extreme risk, which means that
diversifying weights or betas does not necessarily lead
to a diversification of risks.

NON-LINEAR MARGINAL EFFECTS

The previous section established a positive linear
relationship between diversification and the reduction
of extreme risk. However, economic intuition suggests
the relationship may not be entirely linear. To explore
this, we use Probit models that allow us to estimate
the probability of a high level of losses for any given
level of diversification. To do so we introduce a binary
variable, high_CVaR, which takes a value of 1 when
CVaR exceeds the 75th percentile and zero otherwise,
and define its probability using the following models:

Prob(high_CVaR =1) =®(a + $/ARD;)

Prob (high_CVaR =1) = ®(a + B,ASD;)

Prob(high_CVaR =1) = ®(a + B1ARD; + B,ASD;
+ B3AFD; + B4,AHD;)

2

where @() is the standard normal cumulative distribu-
tion function.

We find that both ARD and ASD’s mitigating effects
on extreme losses persist and are strongly significant
when considered alone, but, importantly, the effect of
ASD is not significant anymore once we control for risk
diversification. Non-linear models like Probit measure
diversification effects depending on the diversification
levels, instead of forcing linearity and thus assuming the
same effect across the entire cross-section. This refined
analysis reveals that only ARD systematically reduces
the probability of incurring large extreme losses, while
ASD does not.

This idea is better conveyed through the Probit
marginal effects, which quantify the reduction in the
probability of high CVaR in classical probability terms
(Greene, 2012), depending on the starting diversifica-
tion level. We plot such marginal effects in Figure 1,
where variables are displayed in their original scale.

ARD has a strong nonlinear impact. When ARD is
low, improving it by one point diminishes the probabil-
ity of large tail risk by 20%; at the median ARD (2.04),
the probability decreases by 15%; for high ARD levels, a
similar change reduces the chance by only 2%.

Thus, diversifying reduces extreme losses, but with
diminishing marginal effects: while a good level of risk
diversification is desirable, maximizing diversification
may not significantly improve risks beyond certain lev-
els. Conversely, ASD (right panel) shows no significant
impact after accounting for ARD. This shows that while
improving ARD effectively lowers the likelihood of
extreme losses, other diversification metrics, including
ASD, provide limited additional benefit when ARD does
not change accordingly.

ROBUSTNESS TESTS: LONG-TERM CVAR

AND MAXIMUM DRAWDOWN
We conduct two robustness tests to validate the sta-

bility of our findings.”

e Longer-Horizon Active Extreme Risk We extended
the analysis to a 20-year period (2004-2023) using
model-implied returns based on each fund’s betas
and risk factor returns, which have longer data his-
tories.® Calculating the 95% CVaR for this period,
we repeat the linear regressions and Probit models.
Results remain consistent even when computed on
longer periods: ARD and ASD significantly impact
CVaR in linear models (coefficients are -0.26 and
-0.15, respectively), and Probit models confirm
ARD as the sole metric robustly associated with
reduced active tail risk.

7 Full tabulated results are available upon request.

(
TABLE 2
L

—

Multivariate analysis

Note: Multivariate analysis described in (1). Star (*) indicate statistical significance at the 10%, 5% and
1% level, respectively. Standard errors are in brackets. Data is standardized.

CVaR | CVaR Il CVaR Il CVaR IV CVaRV
Intercept 0 0 0 0 0
-0.041 -0.041 -0.043 -0.042 -0.036
ARD -0.447* -0.214*
-0.041 -0.043
AFD 0.446* 0.303*
-0.041 -0.038
AHD 0.367* 0.227*
-0.043 -0.038
ASD -0.415* -0.192*
-0.042 -0.042
R? Adj. 0.198 0.197 0.133 0.171 0.389
N 476 476 476 476 476
J
[ FIGURE 1 ] ™~

Probit marginal effects for high CVaR

Note: Probit marginal effects for ARD and ASD based on the last specification in (2). In each panel, vari-
ables different than that represented on the x-axis are kept fixed at their mean. Shaded areas denote

confidence intervals.
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Alternative Extreme Risk Measure: Maximum
Drawdown (MDD) While CVaR is widely accepted
and often used for regulatory purposes, another
dimension of extreme risk is captured by the max-
imum drawdown (MDD), which is the maximum
cumulative loss a portfolio experiences before
reverting back to its value over a certain period.
We estimated the maximum drawdown using
model returns from the period 2019-2023 and use
it as independent variable in the previous models.
Regression results align with those for CVaR: higher
ARD and ASD levels correspond to lower MDD
(coefficients are -0.17 and -0.09), though ASD’s
significance weakens when all metrics are included.

Probit results again highlight ARD’s prominent role
in reducing the probability of high extreme losses,
confirming the robustness of its mitigating capabili-
ties across risk definitions.

ISO-RISK ANALYSIS

Analyzing the link between tail risk and risk-based
diversification is challenging due to the intertwined
nature of risk and extreme risk. Traditional statistical
techniques require sample sizes that are currently not
available, which makes it difficult to examine extreme
risk while controlling for risk.

To address this, we develop a technique called iso-
risk rotations that generates random portfolios with

8 Vaucher and Bagnara (2024a) demonstrate the validity of this approach when model fit is adequate. Our sample satisfies this criterion since selected funds have an R? of at least 0.80.



fixed risk and varying diversification levels.? Simply
put, these transformations take an existing portfolio
to produce a new portfolio with random weights but
precisely the same level of risk and holdings concentra-
tion. With this technique, we can generate an unprece-
dented sample of portfolios with fixed levels of risk but
different levels of diversification.

Selecting 197 funds with different risk levels from
the empirical sample, we perform 200 iso-risk rotations
on each fund to obtain 39,400 synthetic portfolios
across 197 controlled levels of risk-an unprecedented
dataset for our analysis. In this expanded sample,
diversification metrics exhibit much greater variation
than in the empirical data: ARD ranges from 0.8 to
6.1, ASD from 2.58 to 9.47, and AFD reaches almost 4.
Meanwhile, active risk and CVaR distributions remain
similar to the empirical sample. This approach is
therefore able to generate synthetic portfolios with
diverse diversification characteristics, allowing for a
more precise assessment of diversification effects on
extreme risk.

Diversification vs. CVaR controlling risk levels

The iso-risk rotation approach allows us to analyze
the relationship between diversification and CVaR while
holding active risk constant. To achieve this, the gen-
erated portfolios are grouped into 49 equally spaced
active risk intervals. Here active risk variations are lim-
ited to only 20-30 bps within each group, whereas
diversification metrics vary more considerably.'® Within
each group, we run the previous regressions models:

CVaR; j =a;+ BiARD; ; + &

CVaR;; =aj+ BiASD; j +¢; ;

CVaR; ; = aj+ BiARD; j + B, AFD; j + B3AHD;
+ BaASD,j + &

3)

where j =1, ..., 49 denotes the risk groupand i = 1, ...,
N; denotes each portfolio belonging to the risk
group j. Within each risk group, variables are stan-
dardised. The first two models assess the individ-
ual effects of ARD and ASD on CVaR, while the third
controls for all diversification metrics, thus identifying
their independent impact, at the same time leaving
the active risk unchanged. Figure 2 visualizes the coef-
ficients of ARD and ASD from the third model across
active risk levels.

Two key observations emerge. First, both risk-
based and sector-based diversification reduce CVaR
across all risk levels: the average coefficients for ARD
and ASD are very similar when taken individually (~0.24
and -0.28), but ARD is more effective than ASD at mit-
igating extreme losses when controlling for all metrics
(coefficients are —=0.20 and —0.09, respectively) whatever
the risk level. In other terms, risk diversification reduces
extreme losses. Importantly, these benefits of diversi-
fication are observable and achievable at every active
risk level: there are no clear regions where coefficients
are systematically positive for ARD or ASD in the figure.
The fact that increasing diversification does not require
day-to-day risk to be reduced systematically is particu-
larly appealing for investors adhering to strict risk bud-
gets and wanting to fully consume their budget while
mitigating extreme risks. We find similar results with
alternative calculations of active risk groups.

Expected performance
We conclude by addressing the impact of diver-
sification on expected performance. As we have
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Impact of diversification on CvaR controlling for active risk level
Note: Regression coefficients of ARD and ASD according to the last specification in (3) across all 49 active
risk groups. Dotted lines represent the average coefficients.
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explained before, we use the portfolios’ active fac-
tor intensity (FI) as a robust estimate of long-term
expected returns. Because risk has an important
impact on performance, we used our enlarged sam-
ple, and thus we can investigate the relationship
between robust long-term returns and diversification
while neutralizing the effect of risk. To do so, we used
the same 49 active risk groups obtained with iso-risk
portfolios and estimated the relationship between
diversification using the models specified in (3) with
Fl as the left-hand side variable. Figure 3 shows the

? Iso-risk rotations maintain non-active holdings-based concentration constant, but not AHD.
10 Notably, we find that the range of achievable diversification narrows as active risk increases: for example, ARD can vary by up to 2 units for low-risk funds (2% active risk) but by less

than 1 unit for high-risk funds (15% active risk).

coefficients for ARD and ASD resulting from this exer-
cise across the risk groups.

The average coefficients for ARD and ASD are gen-
erally small and statistically insignificant, suggesting
no material relationship between diversification and
expected returns. This shows that at every active risk
level, more diversification is not linked to a reduction
in expected performance.’ In practical terms, this also
means that adding diversification does not require the
active risk level to be changed to maintain long-term
expected returns.

"7 Since the risk groups are built so that the active risk is kept approximately constant, the average SR per group is proportional to the average Fl up to a constant. Hence, the results
shown here hold also for portfolio SR and not only for expected performance. Results available upon request.
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CONCLUSION

The key takeaways for investors resulting from our

analysis are the following:

Benefits of Risk-Based Diversification. Diversifi-
cation reduces the likelihood of extreme losses but
in practice managing extreme risk is more effec-
tive with risk-based diversification than traditional
holdings-based measures, including sector-based
diversification, as its effect is robust to a variety of
statistical tests.

Diminishing Marginal Benefits. Adding more
diversification to an already diversified portfolio
does not significantly improve extreme risks. Being
“diversified enough” is sufficient.

Effective Risk Mitigation. Diversification reduces
extreme losses across risk levels and can be
achieved without having to underutilize a target
day-to-day risk budget. For structurally higher-risk
portfolios, diversification is a good substitute for
de-risking.

Minimal Impact on Performance. Adding diversi-
fication has no significant effect on expected per-
formance. This is an important feature for active
managers who wish to reflect their discretionary
views on future returns in the allocation process.
Bottom Line: Risk-based diversification is a pow-
erful, reliable tool for investors looking to reduce
extreme risk and enhance portfolio resilience with-
out underutilizing their risk budget or compromis-
ing performance.
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This article (a summary of a recent research paper'?) addresses climate transition risks in portfolio management by introducing a model that integrates
firm-specific ‘green’ revenues, aligned with the European taxonomy, with economic and energy variables from adverse transition scenarios. Unlike short-
term climate stress tests focusing on carbon pricing, our model incorporates operational cost and revenue transmission channels to derive a conditional
transition loss metric. Applied to 1,287 listed companies, our analysis highlights significant portfolio equity risks with aggregate portfolio impacts ranging
from 0.5-6% and sector-specific losses as high as 10-60% in vulnerable sectors such as Ultilities. Integrating such forward-looking scenario analysis results
with backward-looking financial factor models may help capture shifts in investor perceptions and enhance equity portfolio risk management.

e Climate transition risks present significant challenges for portfolio management. Short-term climate stress tests focus predominantly on carbon pricing
and operational costs, often neglecting longer-term revenue impacts from demand changes.

e This paper introduces a model combining firm-specific ‘green’ revenues, aligned with the European taxonomy, with economic and energy variables
from adverse transition scenarios to calculate a conditional transition loss metric, capturing the interplay between revenue and cost dynamics.

e Applied to the 1,287 MSCI World Index constituents, the analysis highlights three main results: revenue impacts are as influential as carbon pricing in
shaping transition risks; effects vary within sectors, with some firms benefiting under ambitious transition scenarios; and socio-economic uncertainty

strongly influences loss estimates.

INTRODUCTION

Climate-related transition risks are increasingly cen-
tral to equity portfolio management. These risks pose
potential disruptions while offering opportunities for
firms aligned with climate goals. For equity portfolio
managers, transition risks affect valuations, sectoral
dynamics and risk-return profiles. Understanding and
quantifying these risks is crucial for portfolio alloca-
tion. However, the pricing of transition risks in financial
markets remains inconsistent.

Some research indicates firms with higher green-
house gas emissions trade at a discount due to a carbon
risk premium (Bolton and Kacperczyk, 2023). Others
suggest green stocks have outperformed brown stocks,
indicating transition risks are not uniformly priced
(Bernardini et al., 2021; Bauer et al., 2022). Differences
between realized and expected returns, as well as struc-
tural barriers like inadequate risk models and short-
term investment horizons, contribute to this uncertainty
(Thoma and Chenet, 2017; Campiglio et al., 2023).

Long-term scenario analysis has emerged as a crit-
ical tool for assessing transition risks. Unlike short-term
climate stress tests focused on carbon pricing and oper-
ational cost impacts, scenario-based methodologies
incorporate broader economic and energy transforma-
tions. Regulatory bodies like the Network for Greening
the Financial System (NGFS) have advanced integrated
assessment models to capture direct and indirect effects.
However, these approaches often lack firm-level granular-
ity, making it difficult to differentiate risks within sectors.

This paper introduces a model integrating firm-
specific revenue data, particularly “green” revenues
aligned with the European taxonomy, alongside carbon
intensity metrics. By linking firm revenue depen-
dencies to sectoral variables from NGFS scenarios,
the model captures both revenue and operational cost

transmission channels, offering a more comprehensive
transition risk framework. Additionally, it evaluates
financial outcome sensitivity to scenario assumptions,
time horizons, and model uncertainties.

Applying this approach to 1,287 MSCI World
Index companies, the analysis finds revenue transmis-
sion effects as significant as carbon pricing in shaping
transition risks. It highlights substantial intra-sectoral
variation, with some firms benefiting while others face
losses. Scenario and time horizon assumptions prove
crucial, whereas the choice of an integrated assessment
model has a more limited impact.

The rest of the paper is structured as follows:
Section 1 introduces the model and data, Section 2
examines revenue transmission, sectoral differences,
and scenario sensitivity, and Section 3 discusses find-
ings in context, offering recommendations for future
research and risk management.

MODEL AND DATA

Equity asset prices can fluctuate due to shifts in inves-
tors’ perceptions of the firm’s future expected cash flows
or changes in the discount rate applied to the present
value of those cash flows (Pastor et al., 2021). Transition
risk drivers can influence these cash flows, potentially
harming ‘brown’ firms or benefiting ‘green’ firms. This
section introduces a model and its calibration for the con-
ditional transition loss in equity value caused by changes
in expectations surrounding climate transition scenarios,
focusing on the impact of changes in expected cash flows.

A discounted-cash flow model for transition risk
channels

The analysis uses a discounted cash flow model
that captures two key transmission channels. The first
channel, revenue, varies across firms based on activity

contributions, with each segment driven by a correspond-
ing scenario variable. The second channel, operating
costs, depends on the firm’s direct emissions (Scope 1)
intensity and the carbon price specified in the scenario.

Let CF;; denote the cash flows of firm i at time t,
under the expected (baseline) transition scenario. We
assume the following cash flow structure:

CFi,t = Yi,t(1_a)i,t -0-7-p)

where Y] ; represents revenue, ;, the carbon costs rate,
0 the operating cost rate, 7 is the tax rate, and p the
(net) investments rate.’ Firm revenue, Y, is the sum of
the revenue of its activity segments, denoted by s. The
revenue dynamic is driven by a growth factor specific to
each activity segment:

Y.
Yie= ) YisoX Sit
1 Z 1,S Yslo

where Y] ;o is the initial sales of product s for stock i, and

Vst

is the growth factor of the product’s demand over
s,0

time, determined by the scenario.

The carbon cost rate is modelled as the product of
a firm’s direct emissions (Scope 1) and the scenario’s
carbon price, excluding indirect emissions (Scope 2
and 3) from direct cost calculations. This assumes their
impact is already factored in at the sector level via the
integrated assessment model and reflected in firm cash
flows through the revenue channel.

Finally, to avoid negative cash flows, the carbon
cost rate is capped such that the sum of the carbon
cost rate, tax rate, operating cost rate, and investment
rate does not exceed 1:

oy =min(o; x A, 1-7 -0 - p)

12 | orans, T., Priol, J., & Bouchet, V. (2025). Beyond Carbon Price: A Scenario-Based Quantification of Portfolio Financial Loss from Climate Transition Risks. Scientific Portfolio Publication.
https://scientificportfolio.com/pdfs/2025-01-beyond-carbon-price-scenario-based-loss-climate-transition-risks.pdf.
'3 Every rate is expressed as a fraction of the sales. It allows us to factorise the sales in the cash-flows formula.
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mailto:thomas.lorans@scientificportfolio.com
mailto:julien.priol@scientificportfolio.com
https://scientificportfolio.com/pdfs/2025-01-beyond-carbon-price-scenario-based-loss-climate-transition-risks.pdf
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where o is the carbon intensity of the stock i and A, is
the carbon price.

Once the cash flows are projected between the
reference date and the analysis horizon, they are dis-
counted by weighted average cost of capital (WACC):

CFi:

DCF,=——t
T (1+ WACC)t

These discounted cash flows are summed to com-
pute the total firm value V;:

V= ZT:DCE,t
t

The conditional transition loss is finally computed as
the relative change in the stock value compared to the
value in the baseline scenario:

AV;
Li = [ Vbaseline ]

Decomposing the revenue and carbon cost effects
on conditional transition loss

The revenue and operational cost transmission
channels are interconnected. Since carbon costs are
proportional to a firm’s carbon intensity, total operat-
ing costs depend on activity levels, which are in turn
determined by firm revenue. To better understand the
relative contribution of each transmission channel, this
relationship is further analyzed. Specifically, we calcu-
late the sensitivity of DCF to changes in carbon cost
rate ;; and projected sales Y

oDCF, _ Vit
bw,  (1+WACC)
oDCF; _ (1-w,:-1t-0-p)
Y,  (1+WACC)

These partial derivatives give us the sensitivity of the
discounted-cash-flows to the carbon costs rate and sales:

82DCF,, 1

0w, 0Y;;  (1+WACC)

The impact on the discounted-cash-flows of the stock i
due to the climate scenarios can thus be described as:

ADCF& = % x AY; ,
it
ADCF® = ODChy Aw;
' ;¢
2DCF,
ADCFY*® = ODCR, x Aw; AY; ¢
W; 1OVt

where AY;;and Aw;; are the differences in the projected
sales and the carbon costs rate between the initial
expected transition scenario and the new market expec-
tations. The total impact of the transition scenario on
firm i's discounted cash flows can thus be expressed as:

ADCF,; = ADCF, + ADCF? + ADCF*®

The change in stock value due to unexpected tran-
sition concerns is:

AV, = AVY + AV® + AVY<©

The loss from each factor is computed as a ratio to
the baseline stock value:

LY ) [ A\/,Y J
1 V’_basehne

1 Vbaseline
i
LYxa) _ _( AV[YX‘U J
! V[baseline

where Vpaseline is the value of the stock in the initially
expected transition scenario. The loss from net carbon
tax is computed as the loss from carbon netted from the
interaction term:

L™= 19 4 LV

The total loss of the stock i can therefore be
expressed as:

L=l +1o™

This decomposition captures the repricing effects
of unexpected change in transition concerns through
two main dimensions: the net carbon tax effect and the
revenue effect.

Model calibration

The growth factors - specific to each activity
segment — and the carbon price are calibrated based
on the NGFS scenarios database.

The Current Policies scenario serves as the reference,
while Net Zero 2050 is the primary ‘adverse’ transition
scenario. Certain segments, particularly climate poli-
cy-relevant sectors (Battiston et al., 2017), face height-
ened transition risks. For these, relevant NGFS scenario
variables serve as proxies to estimate revenue growth fac-
Yo , where

YS,O
Yt is the demand of the product s at time tand Yy is the
demand of the product s at the base year (2020).
The initial revenue for each activity segment, Y, 50, is

tors (Table 1). The growth factor is defined as

determined using the European Sustainable Taxonomy
(Moody's Product & Services dataset) in conjunction with
the NACE classification.”® The Weighted-Average Cost
of Capital (WACC), Tax Rate (1), Operating Costs Rate
(6), and Net Investments Rate (p) are calibrated with the
global version of the Damodaran Online database,'® at
TRBC sector level'” (Table 2).

RESULTS

Applying the model to the 1,287 largest listed
companies worldwide'® reveals that the revenue
transmission channel has a comparable impact to
carbon pricing. Incorporating both channels reveals het-
erogeneous impacts within transition-sensitive sectors,
offering additional insights beyond carbon intensity as
a risk proxy. Lastly, the analysis examines the sensitivity
of these findings to scenario and time horizon choices.

e [ TABLE 1

—

Activity segments and scenario variables

Note: This table presents mapping between specific segment activities and corresponding NGFS scenario
variables used to proxy revenue trend of each segment.

Activity Segment

NGFS Variable Used to Calibrate the Growth Factor

Other

GDP|MER|Counterfactual without damage

Fossil Fuels Electricity

Secondary Energy|Electricity|Coal

Secondary Energy|Electricity|Gas

Secondary Energy|Electricity|Oil

Low Carbon Electricity

Secondary Energy|Electricity|Biomass

Secondary Energy|Electricity]|Geothermal

Secondary Energy|Electricity|Hydro

Secondary Energy|Electricity|Solar

Secondary Energy|Electricity|Wind

Secondary Energy|Electricity|Nuclear

Fossil Fuels

Primary Energy|Coal

Primary Energy|Gas

Primary Energy|Oil

Secondary Energy|Gases

Secondary Energy|Liquids

Hydrogen

Secondary Energy|Hydrogen

Alternative Transportation

Final Energy|Transportation|Electricity

Final Energy|Transportation|Hydrogen

Conventional Transportation

N\

Final Energy|Transportation|Liquids

J

14 Scenarios are based on three Integrated Assessment Models (IAMs): GCAM 6.0 NGFS, MESSAGEix-GLOBIOM 1.1-M-R12 and REMIND-MAGgPIE 3.2-4.6. We focus on MESSAGEix-

GLOBIOM 1.1-M-R12 model for results presentation.

15 For each stock, revenue is allocated as follows: a) percentages from Moody’s dataset are assigned to activity segments; (b) The remainder is allocated by NACE code, with unmapped

activities ‘Other.’

16 https://pages.stern.nyu.edu/~adamodar/New_Home_Page/data.html.
17 Stocks without a TRBC sector are assigned to the Total sector, calibrated with the total market. Due to lack of data, we assign stocks from the Healthcare sector to the Total sector.

'8 Constituents of the MSCI World Index.


https://pages.stern.nyu.edu/~adamodar/New_Home_Page/data.html

The revenue transmission channel as a key driver
Unlike short-term assessments of carbon pricing on
operating costs, this long-term scenario analysis accounts
for demand shifts across activity segments. The revenue
transmission channel has a greater aggregate impact than
carbon pricing across most sectors, including low-emission
industries (Healthcare, Telecoms, Technology) influenced
by GDP trends and transition-sensitive sectors (Utilities,
Energy, Industrials) where ‘green’ segments grow as
‘brown” segments decline. Overall, Utilities, Energy, Basic
Materials'? and Industrials suffer the greatest losses, with
Utilities facing a potential value loss of up to 58% (Table 3).

Heterogeneous impact for firms within the climate
sensitive sectors

Transition risk scenario analyses using integrated
assessment models provide sector-level financial impact
assessments. However, portfolio managers must under-
stand both the sectoral and intra-sectoral dimensions of
transition risks. Incorporating the revenue transmission
channel alongside carbon pricing reveals significant
heterogeneity. Unlike stress tests focused solely on car-
bon pricing, this approach highlights potential positive
revaluations, particularly in Energy and Utilities, where
both ‘winners’ (stocks with negative losses) and ‘losers’
emerge (Table 4).

A limited overlap between the carbon intensity
and the conditional transition loss

Carbon intensity, defined as emissions relative to
revenue or enterprise value, is often used as a proxy for
transition risks in equity markets. While related to con-
ditional transition loss, this analysis reveals significant
divergence due to the influence of revenue, especially
in Utilities (Figure 1).

Sensitivity analysis to scenario, model, and horizon

Long-term scenario analysis differs from traditional
risk management by extending the horizon to as far
as 2050 and incorporating multiple scenarios without
assigned probabilities. Consequentially, assessing sen-
sitivity to these parameters is crucial.

All transition scenarios result in significantly lower con-
ditional transition losses than the Net Zero 2050 scenario
(Table 5). Aggregate losses range from 0.4% under the
Fragmented World scenario to 6.2% under Net Zero 2050,
illustrating the potential range of transition risk impacts.

Time horizon plays a significant role, with the con-
ditional transition loss with the conditional transition
loss increasing from 2.5% at a 2030 horizon to 6.2% by
2050. Despite discounting reducing long-term cash flow
impacts, most transition risks emerge after 2030 (Table 6).

The balance between the revenue mechanism
and the carbon price transmission channel shifts with
the time horizon. By 2030, losses are largely driven by
the carbon tax, but beyond 2030, revenue dynamics
become the primary driver (Table 7).

Our results exhibit limited sensitivity to the choice
of the integrated assessment model. For the aggregate
universe, the maximum variation in conditional transi-
tion loss across models is 1.2% (ranging from 6.2% to
5.1%) (Table 8).

Combining the sensitivities to each parameter indi-
cates that conditional transition loss is predominantly
influenced by scenario and time horizon choices. Model
uncertainties have a smaller impact (Table 9).

DISCUSSION AND CONCLUSION

This study enhances the understanding of climate
transition risks by integrating firm-level data into long-
term scenario analysis to quantify financial impacts in
equity portfolios. By incorporating revenue (demand
shifts) and operational cost transmission (carbon
pricing), it reveals significant intra-sectoral variation.
Utilities and other climate-related sectors show mixed
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[ [ TABLE 2

J

Calibrated parameters by TRBC sector

Note: This table presents calibrated parameters for different TRBC sectors, including Weighted-Average
Cost of Capital (WACC), Tax Rate (1), Operating Costs Rate (8), and Net Investments Rate (p). The WACC is
calibrated using the field Cost of Capital. The tax rate (1) is derived from the Tax Rate field. The operating
costs rate (0) is calculated by subtracting the Pre-tax, Pre-stock compensation Operating Margin from the
Gross Margin. The net investments rate (p) is calibrated using the field Net Capex/Sales.

Sector WACC T 0 p

Industrials 0.091 0.201 0.116 0.071
Basic Materials 0.094 0.140 0.090 0.038
Cyclical Consumer 0.091 0.138 0.308 -0.005
Energy 0.086 0.136 0.068 0.022
Financials 0.075 0.036 0.232 -0.032
Non-Cyclical Consumer 0.073 0.174 0.241 0.122
Technology 0.107 0.079 0.270 0.026
Telecoms 0.077 0.178 0.309 0.016
Utilities 0.082 0.141 0.190 0.116
Total 0.064 0.125 0.221 0.032

e [ TABLE 3

J

N\

Conditional transition loss per sector

Note: The table presents the weighted average conditional transition loss for each sector, decomposed

into total loss, net carbon tax loss, and revenue loss under the Net Zero 2050 scenario (MESSAGEix-

GLOBIOM 1.1-M-R12 model). The ‘Revenue impact/carbon tax impact ratio’ compares revenue-driven

losses to carbon tax losses. Ratios above 1 (bolded) indicate revenue shifts outweigh carbon tax effects,

while those below 1 suggest the opposite. Negative total loss values reflect net gains.

Sector Total (%) From Net From Revenue Impact /
Carbon Tax (%) Revenue (%) Carbon Tax Impact Ratio

Utilities 57.9 22.2 35.6 1.6

Energy 33.1 12.4 20.7 1.7

Basic Materials 22.0 20.1 1.0 0.1

Industrials 9.8 4.9 5.0 1.0

Non-Cyclical Consumer 4.7 3.0 1.8 0.6

Financials 3.1 1.2 1.9 1.5

Healthcare 2.5 0.7 1.7 2.5

Telecoms 2.1 0.3 1.8 6.3

Technology 1.8 0.3 1.5 4.6

Cyclical Consumer -1.6 1.7 -3.3 1.9

MSCI World 5.9 2.9 3.0 1.0

J

effects, with some firms benefiting and others incurring
losses. These findings highlight the limitations of
carbon intensity as a proxy for transition risks.
Long-term  forward-looking scenario analyses
are challenging to compare due to varying assump-
tions. Our findings, slightly lower than existing studies
(Figure 2), reflect the inclusion of transition benefits,
unlike most studies that focus solely on losses. For
Energy and Utilities—the most sensitive sectors—
our results rank in the upper half for transition losses
(Figure 3). While estimates of conditional transition loss

vary widely, sector-specific ranges emerge: diversified

portfolios face losses of 0-15%, while sector-specific
losses are broader—10-50% for Energy and 10-80%
for Utilities—highlighting substantial sectoral heteroge-
neity in transition risks.

The sensitivity analysis underscores the substantial
impact of scenario design and time horizon on transition
risk. Despite discounting effects, most conditional transi-
tion loss arises from cash flows beyond 2030, emphasizing
the need for forward-looking approaches. Practitioners
and regulators should adopt integrated methodologies
that capture revenue and operational cost impacts while
leveraging complementary scenarios and models.

12 Basic Materials displays a revenue-to-carbon-tax ratio of only 0.05, making it almost immune to the revenue dimension. Its high exposure to carbon taxes likely stems from minimal
expected demand shifts under transition scenarios. Decarbonisation in this sector depends more on energy supply chain shifts (Energy and Utilities) than on demand-side changes.

11
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TABLE 4

S

N

Relationship between carbon intensity and conditional transition loss
Note: The graphics display the relation between carbon intensity and various loss types across Utilities, Energy, Basic Materials, and Industrials under the Net Zero
2050 scenario (MESSAGEix-GLOBIOM 1.1-M-R12). Each plot presents loss sensitivity to carbon intensity levels, measured as the logarithm of Scope 1+2 intensities. The
subplots illustrate the total loss, loss from net carbon tax, and loss from revenue. Winsorization at the 1st and 99th percentiles mitigate extreme values. Log transfor-

mation allows for a more balanced visualization.
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Sector

Basic materials
Energy
Industrials

Utilities

Ve
Summary statistics by sector
Note: Summary statistics for total loss, loss from net carbon tax, and loss from revenue are presented for Utilities, Energy, Basic Materials, Industrials, and the MSCI
World index under the Net Zero 2050 scenario using the MESSAGEix-GLOBIOM 1.1-M-R12 model. The data includes mean, standard deviation, minimum, maximum,
and quartiles (Q1, median, Q3) for each sector. Total loss reflects overall transition risk impacts, while net carbon tax and revenue losses isolate carbon pricing and
revenue effects. Negative values indicate gains.
Sector Nb. of Stocks Mean Std Dev Min Max Q1 50% Q3
a) Conditional transition lost (total) (%)
Utilities 69 51.8 27.3 -97.5 71.1 49.5 58.9 67.3
Energy 59 30.8 22.1 -84.6 57.1 27.4 333 43.8
Basic Materials 88 22.0 20.2 -0.7 66.7 5.1 15.2 33.0
Industrials 215 8.4 131 -13.7 65.1 1.9 2.5 7.8
MSCI World 1287 9.2 17.0 -97.5 71.1 1.8 2.2 5.3
b) Loss from net carbon tax (%)
Utilities 69 22.4 254 0.0 138.0 5.1 16.9 30.2
Energy 59 12.7 10.3 0.1 33.9 4.9 9.5 18.4
Basic Materials 88 20.3 20.3 0.1 64.3 4.0 13.6 32.0
Industrials 215 4.2 10.6 0.0 63.4 0.3 0.7 1.5
MSCI World 1287 4.7 11.7 0.0 138.0 0.1 0.4 2.3
¢) Loss from revenue (%)
Utilities 69 29.3 31.9 -97.9 49.0 20.2 46.5 48.9
Energy 59 18.0 16.1 -85.0 340.0 23.2 23.3 23.3
Basic Materials 88 1.6 3.1 -17.4 21.9 1.6 1.6 1.6
Industrials 215 4.2 6.5 -15.2 18.4 1.7 1.7 1.7
MSCI World 1287 4.6 11.3 -97.9 49.0 1.7 1.7 1.8

\-
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Ve { TABLE 5

J

Conditional transition loss sensitivity to scenario

Note: This table displays sectoral losses across transition scenarios—Net Zero 2050, Below 2°C, Delayed Transition, and Fragmented World. The Max-Min column
captures the difference between maximum and minimum losses, indicating each sector’s sensitivity to transition risks. Higher values denote greater sensitivity; lower
values suggest stability across scenarios.

Sector Net Zero 2050 Below 2°C Delayed Transition Fragmented World Max-Min
Utilities 57.9 26.6 21.7 9.9 47.9
Energy 33.1 9.8 7.5 3.3 29.8
Basic Materials 22.0 2.9 2.7 1.1 20.9
Industrials 9.8 2.6 2.0 1.2 8.6
MSCI World 6.2 1.2 1.0 0.4 5.8
\- J
Ve L TABLE 6 J ~

Conditional transition loss sensitivity to horizon

Note: This table presents sectoral loss sensitivity to time horizons (2030 vs. 2050), with percentage losses for each sector at both points. The 2030/2050 column reflects
near-term versus long-term impacts, while the Max-Min column captures the range of change over time. Higher Max-Min values indicate greater variation; lower
values suggest more stability.

Sector 2030 2050 2030/2050 Max-Min
Utilities 29.3 57.9 0.5 28.5
Energy 12.5 33.1 0.4 20.6
Basic Materials 9.0 22.0 0.4 13.0
Industrials 3.1 9.8 0.3 6.8
MSCI World 2.5 6.2 0.4 3.7
\o J
Revenue impact/ carbon tax impact ratio Conditional transition loss sensitivity to model
Note: This table displays the ratio of revenue Note: This table sectoral loss sensitivity to different climate-economy models—MESSAGEix-GLOBIOM
impact to carbon tax impact across sectors 11-M-R12, GCAM 6.0 NGFS, and REMIND-MAgPIE 3.2-4.6—under the Net Zero 2050 scenario. The Max-
for 2030 and 2050. A ratio above 1 indicates Min column captures the range of variability in model outcomes.

revenue impact exceeds carbon tax impact,
while a ratio below 1 suggests the opposite.

Shifts between 2030 and 2050 highlight Sector MESSAGEix- GCAM 6.0 REMIND- Max-Min
how the relative importance of these factors GLOBIOM 1.1-M-R12 NGFS MAgPIE 3.2-4.6
evolves over time. Utilities 57.8 51.1 56.5 6.7
Energy 33.1 22.7 26.3 10.4
Sector 2030 2050 Basic Materials 22.0 12.2 13.2 9.8
Utilities 0.7 1.6 .
Industrials 9.8 5.9 5.0 4.8
E 0.9 1.7
nergy MSCI World 6.2 5.2 5.1 1.2
Basic Materials 0.1 0.1
Industrials 0.6 1.0 - J
MSCI World 0.7 1.0




14

—

A SUPPLEMENT TO PENSIONS & INVESTMENTS
Research for Institutional Money Management

TABLE 9

Conditional transition loss sensitivity to
the main parameters

Note: This table presents sectoral loss sen-
sitivity to calibration settings, including
scenario (Max-Min Scenario), time horizon
(Max-Min Horizon), and integrated assess-
ment model (Max-Min Model). The values
indicate the range of potential outcomes by
measuring the difference between maxi-
mum and minimum losses.

Sector Max-Min Max-Min Max-Min
Scenario Horizon Model
Utilities 47.9 28.5 6.7
Energy 29.8 20.6 10.4
Basic 20.9 13.0 9.8
Materials
Industrials 8.6 6.8 4.8
MSCI 5.8 3.7 1.2
World

—

{ FIGURE 2 }

Comparison of conditional transition loss estimates in the literature for a diversified equity
portfolio

Note: The figure displays the conditional transition loss per sector for a diversified portfolio, using each
study’s most stringent scenario. The selected horizon corresponds to either the study’s default or the one
yielding the most adverse outcomes.
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Comparison of conditional transition loss estimates in the literature for transition-sensitive sectors
Note: The figure displays total sectoral losses for a diversified portfolio under each study’s most stringent scenario. Horizons align with default settings or the most
adverse outcomes. Sector classifications were standardized to TRBC sectors (Energy and Utilities), with median values used where aggregation was needed.
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This study examines the informational overlap between environmental, social, and governance (ESG) scores and ESG exclusionary screening strategies

within equity portfolios.

e While ESG scores are widely used for integrating sustainability considerations in portfolio management, they may not fully align with exclusion criteria
targeting companies engaged in controversial activities or behavior.

e By comparing the results of both approaches on a set of 417 indexes, the analysis reveals that reliance on ESG scores alone omits a substantial propor-
tion of companies that fail to meet “do no harm” criteria.

* However, the results show that exclusion strategies can enhance a portfolio’s ESG score, suggesting a complementary role in achieving sustainable

investment objectives.

INTRODUCTION

The Global Sustainable Investment Alliance (GSIA)
defines sustainable investment as an “investment
approach that considers environmental, social and gov-
ernance (ESG) factors in portfolio selection and man-
agement” (GSIA, 2021). Under this broad definition,
the volume of global sustainable investments reached
USD30.3 trillion in 2022, representing approximately
38% of all professionally managed assets. Within sus-
tainable investment strategies, exclusionary screening,
ESG integration,?® and engagement represent the most
prevalent approaches. While these strategies may the-
oretically complement one another, in practice, they
rely on diverse data sources which can lead to incon-
sistent outcomes. This study focuses on examining the
relationship between exclusion screening, guided by
“do-no-harm” criteria, and ESG integration, guided by
ESG scores.

Exclusion screening, historically the earliest practice
within sustainable finance, remains widely adopted
despite a recent slowdown (GSIA, 2023). The Finan-
cial Exclusion Tracker Initiative reports that exclusions
currently emphasize climate-related concerns. For
instance, the EU regulation on climate benchmarks
mandates exclusion criteria concerning fossil fuel-
related activities and adheres to the “do-no-harm”
principles embedded in the EU Taxonomy. In practice,
investors implement these exclusion thresholds based
on data detailing companies’ operational activities
(e.g., revenue composition, energy mix) and behavior
(e.g., controversies).

In contrast, ESG integration has gained momen-
tum, driven by client preferences and regulatory pres-
sure (GSIA, 2023; PRI, 2023). Integrating ESG criteria is
increasingly recognized as part of an investor’s fiduciary
duty and is a prerequisite for claiming alignment with
sustainable objectives, as outlined in Articles 8 and 9 of
the Sustainable Finance Disclosure Regulation (SFDR).
In practice, ESG scores — whether proprietary or pro-
vided by external data providers — are the most com-
mon data source supporting this approach.

To clarify the relationship between exclusion
screening and ESG integration, this study addresses

the following questions: do strategies based solely on
ESG scores naturally shield investors from companies
whose activities or behaviors may cause harm? When
combined with ESG integration, do exclusion strategies
improve ESG scores?

DATA AND METHOD

These questions are explored through an analy-
sis of the composition of 417 diversified indexes from
the Developed Europe and United States investment
regions, as of October 2024.

To capture the variety in exclusion practices — includ-
ing themes, criteria, and thresholds, three distinct exclu-
sion strategies, developed by Porteu de la Morandiére,
Vaucher and Bouchet (2025), are considered. The first
strategy reflects consensus-based exclusion crite-
ria among the largest 100 asset owners; the second
includes additional climate criteria defined by the
Paris-Aligned Benchmark standards; the third excludes
companies that contribute negatively to the United
Nations Sustainable Development Goals (SDGs) (see
Appendix for details on the three strategies). In terms of

e [ TABLE 1 ] ™~

Descriptive statistics related to ESG screens

each region.

Note: This table shows, for each ESG exclusion strategy (ESG screen), descriptive statistics related to the
stocks that do not meet the criteria defined by the screen. The second column from the left shows the
average financial weight represented by these stocks in the indexes for each region, while the third and
fourth columns show the number of these stocks and their financial weight within the benchmarks for

a) Developed Europe

ESG Indexes (n = 130) Benchmark Companies (n = 406)
Screen Average Weight Excluded Number Excluded Weight Excluded
Consensus 12.5% 35 13.3%
PAB 15.3% 46 15.9%
SDG 55.2% 176 58.3%

b) United States

NS

ESG Indexes (n = 387) Benchmark Companies (n = 467)
Screen Average Weight Excluded Number Excluded Weight Excluded
Consensus 13.9% 54 14.3%
PAB 19.6% 68 17.5%
SDG 61.2% 213 68.7%

20 Defined as the “consideration of ESG factors within an investment analysis and decision-making process with the aim to improve risk-adjusted returns” (GSIA, 2023, p. 7).
https://scientificportfolio.com/pdfs/2024-12-do-esg-scores-and-esg-screening-tell-the-same-story.pdf.
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weight excluded, the Consensus and PAB screens have
similar impacts for Developed Europe indexes, while
the SDG screen leads to significantly higher exclusions
(Table 1 and Table 1 in “Do ESG Exclusions have an
Effect on Portfolio Risk and Diversification?”, p. 22).

ESG scores have been the subject of much debate
and are known to vary widely across providers. Dif-
ferent providers often assign different scores to the
same company or the same fund. For example, among
S&P 500 companies, the average correlation between
ESG ratings from six providers is less than 0.5 (Gibson
Brandon et al., 2022). Furthermore, only 20% of funds
deemed ESG-compliant by any one of the three major
providers — Bloomberg, Morningstar, or Refinitiv — are
classified as sustainable by all three. At the company
level, Berg, Koelbel and Rigobon (2022) show that the
divergence in ESG scores is mainly explained by differ-
ences in the measurement of each of the underlying
ESG attributes, but also by different attribute weights,
and to a lesser extent by differences in the attributes
included in the scope of these scores.?’ To account
for this heterogeneity in ESG scores, this study uses
a unique database provided by ValueCo that aggre-
gates ESG scores from more than five asset managers
for each equity issuer. ValueCo?? specializes in collect-
ing proprietary extra-financial assessments developed
internally by asset managers to provide an ESG market
view, similar to an ESG bid-offer system for financial
markets.?> Notably, companies and indexes in the
Developed Europe region generally have higher aver-
age ESG scores compared to those in the United States
region (Table 2).
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TABLE 2

—

Descriptive statistics of ESG scores
Note: This table shows, for each ESG score dimension, descriptive statistics related to the score of the stocks.
The second column from the left shows the average financial cap-weighted score in the indexes for each
region, while the third and fourth columns show the cap-weighted score of the corresponding regional
benchmark. The share of companies covered by scores — with a minimum of five independent ratings per
company — is on average 97% for the Developed Europe indexes and 94% for the United States indexes.

a) Developed Europe

Dimension Average Score (cap-weighted) Cap-Weighted Score
of Indexes (n = 130) of Companies (n = 406)

ESG 59.8 58.4

E 56.0 53.0

S 56.9 55.1

G 68.7 66.5

b) United States

Dimension Average Score (cap-weighted) Cap-Weighted Score
of Indexes (n = 387) of Companies (n = 467)
ESG 48.6 48.9
E 45.7 41.6
48.3 51.5
G 58.2 57.0
( TABLE 3 ]
L J

Impact of exclusion according to the ESG score quartile at the indexes level and at the benchmark company’s level

Note: This table shows the evolution of the weight of stocks that do not meet the “do no harm” criteria associated with the three screens, as a function of the ESG score.
The left columns show the average weight of these stocks for different indexes grouped by quartile according to their EGS score (indexes in g4 are those with the
highest scores), while the right-hand columns do the same for benchmark stocks.

a) Developed Europe

Indexes (n = 130)

Benchmark (n = 406)

N\

Quartile Average Average Weight Excluded Quartile Average Score of Nb. of the Benchmark
Score of of Indexes the Benchmark Companies Excluded
Indexes Consensus PAB SDG Companies Consensus PAB SDG
gl (h =33 55.6 13.4 24.4 60.1 gl (h=102) 45.9 19.0 22.0 54.0
g2 (n=32) 59.1 1.3 13.2 56.8 g2 (n=101) 57.0 4.0 8.0 38.0
g3 (n =32 60.8 6.8 8.5 55.0 g3 (n =102) 62.1 3.0 5.0 41.0
q4 (n = 33) 63.7 8.1 8.8 49.2 g4 (n =101) 68.8 9.0 11.0 43.0
b) United States
Indexes (n = 387) Benchmark (n = 467)
Quartile Average Average Weight Excluded Quartile Average Score of Nb. of the Benchmark
Score of of Indexes the Benchmark Companies Excluded
Indexes Consensus PAB SDG Companies Consensus PAB SDG
gl (h=97) 42.6 20.7 35.2 68.6 ql (h=117) 324 40.0 52.0 84.0
g2 (n = 96) 48.1 14.0 18.3 61.1 g2 (n=117) 47.3 5.0 7.0 42.0
g3 (n = 96) 50.1 11.5 15.3 59.9 g3 (nh=116) 53.7 2.0 2.0 42.0
q4 (n = 97) 53.6 7.0 8.1 55.1 q4 (n=117) 62.1 7.0 7.0 44.0

21 The respective contributions of “measurement”, “scope” and “weight” are 56%, 38% and 6%.

22 See https://www.valuecometrics.com/en.

23 Scores are normalised between 0 and 100. Unless specifically indicated otherwise, the scores used in this study are the median scores for each issuer.
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Limitations of ESG scores in identifying harmful
companies

The first result from this study is that good ESG
scores, whether at the company level or aggregated
index level, are not sufficient to guarantee that a com-
pany’s activities or behavior align with the do no harm
criteria. Although indexes with the best aggregate
ESG scores (those in the fourth quartile) typically con-
tain fewer harmful stocks than those with lower ESG

scores,?*

a notable proportion of stocks within these
high-scoring indexes should still be excluded accord-
ing to the three exclusion screens. For example, of
the 97 indexes with the best ESG scores in the United

States, 41 hold more than 8% of companies that are

considered harmful according to the consensus criteria

(by way of reference, the US benchmark contains 14%

of such companies) (Table 3).

These results are consistent when analyzing the con-
stituents of the regional benchmarks: the companies
with the best ESG scores do not necessarily meet the
do-no-harm criteria. In the Developed Europe bench-
mark, out of the 101 companies in the top quartile in
terms of ESG score, nine companies (approximately
10%) fail to meet the criteria associated with the Con-
sensus screen. This discrepancy can be attributed to
several factors.

e Firstly, most of these companies operate in the
Energy and Utilities sectors, which face structural
sustainability challenges and are often excluded
from PAB-aligned portfolios. On the other hand,
best-in-class ESG scoring approaches may identify
leaders within these sectors and assign them high
scores for performing better than their peers, even
though they remain large carbon emitters.

e Secondly, ESG scores often take into account a
broad range of factors, while PAB filters focus on
climate-related metrics. Good performance or
ambitious commitment on other environmental
topics, or regarding social and governance chal-
lenges, may lead a company to get high ESG scores
in spite of harmful practices and activities from a
climate-focused point of view.

* Finally, some of these companies are actively tran-
sitioning towards more sustainable practices, which
are valued in their ESG scores, but still have fossil
fuel exposure excluded under PAB. The forward-
looking dimension of ESG scores may inflate the
results of companies showing steady and credible
improvements in their practices before they actu-
ally meet the criteria to be included in PAB-aligned
portfolios.?®

The second result of this study is that targeting
companies with the lowest ESG scores within these
benchmarks does not allow for proper identification of
companies with harmful activities or behaviors. Within
the Developed Europe benchmark, a selection of the
35 companies with the lowest ESG scores — correspond-
ing to the number of exclusions under the Consensus
screen — reveals that only 12 companies overlap with
those identified by the Consensus filter. Consequently,
an exclusion approach based on ESG score rankings
alone would fail to capture roughly two-third of the
companies that are deemed to have a negative impact
according to the consensus criteria.

Exclusion of harmful companies tend to improve
ESG score

As outlined in the previous section, ESG integra-
tion based solely on ESG scores may not adequately
ensure alignment with a “do no harm” principle. This
calls for an examination of the potential compatibility
between ESG integration and exclusionary screening

[ FIGURE 1 }

Evolution of the distribution of ESG scores of indexes after exclusion

Note: This graph shows the evolution of the ESG scores of the indexes for each region, after different ESG
exclusion strategies (ESG screens). Whatever the ESG screen considered, the improvement in the ESG
score is significant.
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[ TABLE 4 }

Score of benchmark constituents with controversial activities or behaviour

Note: This table shows the average score (ESG, E, S, and G) of stocks that do not meet the “do no harm”
criteria of the different ESG screens within each regional benchmark. Stocks corresponding to companies
that do not comply with the Consensus and PAB screens have significantly lower ESG scores than the
other benchmark constituents.

a) Developed Europe

Score Average Score Average of Constituents that
of Constituents Do not Meet the Criteria
Consensus PAB SDG
ESG 58.4 51.2 52.5 57.1
E 53.0 51.7 525 53.3
S 55.1 49.5 51.2 53.7
G 66.5 67.8 66.8 67.0
b) United States
Score Average Score Average of Constituents that
of Constituents Do not Meet the Criteria
Consensus PAB SDG
ESG 48.8 33.1 334 44.8
E 41.6 40.9 41.1 40.6
51.5 51.3 48.9 48.9
G 57.0 56.8 55.4 55.4

24 The difference between the top-quartile (q4) indexes and those in the second and third quartiles (g2, g3) is not statistically significant for Developed Europe indexes.

25 Companies with higher ESG scores also tend to have more divergent scores (see Appendix). However, the test results remain similar when using the score from the first quartile of the

score distribution for a given company.




approaches. In particular, it is crucial to assess the
impact of exclusions on strategies aimed at maximizing
a portfolio’s ESG score.

The analysis suggests that excluding harmful stocks
does not hinder such strategies. On the contrary, exclu-
sions tend to have a positive effect on the aggregate
ESG score. Applying the three exclusion screens to the
set of indexes, followed by a proportional reweighting,
leads to a significant increase in their weighted average
ESG scores (Figure 1).

These results are consistent when analyzing the con-
stituents of both benchmarks. Companies that do not
meet the criteria set by the Consensus and PAB screens
typically have ESG scores significantly below the aver-
age, a trend that is especially pronounced among US
companies26 (Table 4).

However, the impact of exclusions on the aggregate
ESG score depends on the initial level of the aggregate
ESG score. For Developed Europe, indexes already
exhibiting a high ESG score (in the fourth quartile g4),
exclusions have no significant positive effect (Table 5).

As mentioned in the previous section, certain com-
panies with high ESG scores are excluded, potentially
reducing the aggregate ESG score of portfolios con-
centrated on these stocks. In our index universe, only
two indexes are subject to a (non-significant) reduction
in their aggregate ESG score.

CONCLUSION

This study shows that ESG integration relying solely
on ESG scores does not ensure alignment with the
“do no harm” principles within portfolios. The anal-
ysis of diversified indexes from Developed Europe
and the United States demonstrates that exclusionary
screening based on ESG criteria identifies companies
engaging in harmful activities or behaviors that ESG
scores alone may fail to identify. However, these two
approaches are not incompatible. Applying exclusion
screens generally improves the weighted average ESG
scores of indexes, indicating that exclusions can com-
plement ESG integration by refining portfolio quality
without detracting from ESG performance. These find-
ings highlight the potential for exclusionary practices
to reinforce ESG integration, supporting the creation
of more sustainable and resilient investment portfo-
lios. The natural next step would be to anticipate the
financial impact of such exclusions, a topic which is cov-
ered in Porteu de la Morandiére, Vaucher and Bouchet
(2025) where they find that applying exclusions either
based on consensus criteria or climate criteria has a rel-
atively low impact on the financial risk profile of indexes
and that this impact can be further reduced with an
optimized reallocation.

APPENDIX

ESG exclusion screens

The “"Consensus” screen is based on an analysis of
the exclusion policies of the world’s 100 largest asset
owners. This analysis resulted in a set of four crite-
ria most frequently used by asset owners that define
the screen: the controversial weapons industry, the
tobacco industry, the coal industry and controversies
related to the United Nations Global Compact (UNGC)
10 principles.?’

The PAB screen is based on the minimum standards?®
that define EU Climate Transition Benchmarks and
Paris-aligned Benchmarks. In addition to minimum
reduction of greenhouse gas footprint (not considered
in this article), these standards define exclusion criteria
related to climate change (coal and fossil fuels indus-
tries) and to sustainable development (tobacco and
controversial weapons industries, controversies related
to the UNGC principles.
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[ TABLE 5 ]

Impact of exclusion on the weighted average scores of the indexes by Quartile

Note: This table shows the changes in the cap-weighted average ESG score of indexes after different ESG
exclusion strategies, according to the starting ESG score of these indexes (by quartiles). For Developed Europe
indexes already exhibiting a high ESG score (q4), none of the exclusion strategies have a significant effect.

a) Developed Europe

Indexes (n = 130)

Quartile Average New Weighted Average
Score of Indexes Scores After Exclusion
Indexes Consensus PAB SDG
gl (n=33) 55.6 58.3 58.6 59.0
g2 (n =32 59.1 60.3 60.4 60.8
g3 (n=32) 60.8 61.1 61.1 61.6
g4 (n =33) 63.7 63.6 63.6 63.7

b) United States

Indexes (n = 387)

~

N\

Quartile Average New Weighted Average
Score of Indexes Scores After Exclusion
Indexes Consensus PAB SDG
ql (n=97) 42.6 46.2 47.7 48.7
g2 (n = 96) 48.1 50.4 51.2 52.1
g3 (n = 96) 50.1 51.7 52.4 53.6
g4 (n =97) 53.6 54.2 54.4 55.6
[ )
L TABLE 6 J

Dispersion of ESG scores

Note: This table shows the dispersion of ESG scores for benchmark constituents according to their initial ESG
score (stocks are grouped by quartiles), and according to whether they are excluded by different ESG screens
(right columns). The dispersion score is expressed between 0 (no dispersion) and 100 (maximum dispersion)
and corresponds to the deviation from the average of the scores given by the different asset managers.

a) Developed Europe

Quartile Average ESG Average ESG Scores Dispersion
Scores Dispersion of the Companies Excluded
izft;heeBCe ZTI:D;:\I:(SS Consensus PAB SDG

ql 771 74.8 74.9 76.7

a2 78.6 76.5 76.4 77.1

g3 79.0 74.5 73.0 76.4

g4 79.3 81.0 81.0 80.0

b) United States

Quartile Average ESG Average ESG Scores Dispersion
Scores Dispersion of the Companies Excluded
i:ft:\heeBCe T‘T::‘Z:(i Consensus PAB SDG

ql 84.8 83.4 84.1 85.1

g2 76.8 76.4 77.4 75.5

g3 76.2 83.8 83.8 77.2

g4 75.4 76.1 76.1 76.1

26 In contrast, companies excluded by the SDG filter tend to have ESG scores close to the benchmark average.
27 The ten principles are available at: https://unglobalcompact.org/what-is-gc/mission/principles.

28 Commission Delegated Regulation (EU) 2020/1818.
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Finally, the “sustainable development goals” or SDG
screen is based on the United Nations sustainable devel-
opment goals framework adopted in 2015. This frame-
work consists of 17 goals and 169 targets to be achieved
by 2030, covering social, environmental, and economic
issues. The exclusion criteria of the corresponding
screen cover any activities or behavior that would hinder
the achievement of these goals and targets (the com-
plete methodology for the three screen is available in
Porteu de la Morandiére, Vaucher and Bouchet, 2025).

ESG score dispersion

Within the EU benchmark, companies with high
ESG score - including those that are excluded by the
different ESG screens — exhibit a high dispersion in their
ESG scores (Table 6), potentially indicating that while
these companies perform well in most ESG areas, cer-
tain aspects of their operations are heterogeneously
penalized by the different asset managers rating
scales. Another interpretation could be a misalignment
between the reporting and the actual performance of

these companies on ESG topics. When they underreport
or, on the contrary, indulge in greenwashing, ESG data
providers have different methodologies to estimate the
gaps or penalize misleading claims. The data sources
employed by investors for their responsible investment
strategy may therefore introduce divergence in the
resulting scores. This is not the case for the US index,
where ESG score dispersion is already high across the
board, reflecting broader variability in how companies
are evaluated by the different asset managers.
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Exclusion/negative screening is the most popular methodology used to integrate environmental, social, and governance (ESG) criteria into investment
strategies. It consists of excluding instruments issued by companies that don’t meet the criteria defined in the manager’s investment policy. This method is

often applied in passive investment strategies that combine exclusion criteria with index replication. In this article (a summary of a recent research paper

29)
9

we examine the impact of exclusion policies on the financial risks of 493 indexes from Developed Europe and the US. To address varying ESG criteria, we
built three screens: one based on consensual criteria among asset owners, another incorporating additional climate criteria, and a third eliminating companies
negatively impacting any United Nations sustainable development goal. The first two screens show limited impact on index risks, especially when using

optimized reallocation.

e Onasample of 128 European indexes, the application of our ESG screens leads to an average excluded weight of 9%, 10% and 58% for our consensus,
climate and SDG screens, respectively; on a sample of 365 US indexes, it results in an average exclusion of 19%, 23% and 67%, depending on the

screen.

e Applying ESG screens with a naive (pro rata) reallocation method results in a median tracking error between 0.9% and 4.7%, varying by screen and
region. Sector deviations are most significant in the “Energy” and “Utility” sectors. Exclusions increase exposure to the Fama and French (2015) “prof-
itability” factor while slightly reducing exposure to “investment” and “value” factors. Using an optimized reallocation method reduces the tracking error
by 0.3% and 1.6% and minimizes factor exposure deviations.

e ESG screens often reduce carbon footprint. With naive reallocation scheme, reductions can reach up to 54% after PAB screening in the US sample.
However, this reduction does not occur when using optimized reallocation.

INTRODUCTION

Exclusion, the oldest practice in sustainable
finance (Schueth, 2003), remains very popular, with
about USD3,840 billion of assets under manage-
ment (AUM) subject to negative screening, and
USD1,807 billion subject to norm-based screening,
out of USD30,321 billion in total sustainable AUM
(GSIA, 2023). Despite variations in motivation, crite-
ria and thresholds, exclusion remains a foundational
sustainable strategy. Based on a review of the aca-
demic literature, Bouchet and Safaee (2024) highlight
that the main building blocks that investors ought
to consider — themes, levers (including exclusion,
allocation, and engagement) and data — are interde-
pendent and propose four families of coherent sus-
tainable investment strategies. Although each strategy
targets a specific type of extra-financial impact, all
incorporate exclusion (Table 1). This study focuses
on exclusions based on environmental, social and/or
governance (ESG) criteria that can contribute to these
strategies.

Exclusion reduces a company’s access to capital,
raising its market-implied cost of equity and pressur-
ing it to reform if the cost of change is lower than the
share price loss®® (Heinkel et al., 2001; Pastor et al.,
2021; De Angelis et al., 2022). The effects of exclu-
sion are also indirect: Bergman (2018) highlights the
public discourse shift over the low-carbon transition
and Braungardt et al. (2019) show the positive effects
of the divestment movement on effective climate pol-
icy development. Bouchet and Safaee (2024) conclude
that exclusion is relevant in three main situations: for
consensus non-sustainable activities such as human
rights violations, when other levers such as shareholder

engagement have failed, or when it is a moral impera-
tive for investors.

Whatever
owners need to anticipate the financial impact of ESG

the extra-financial motivation, asset-
exclusion. However, the existing literature presents
contradictory results. The lack of consensus on the rela-
tion between ESG exclusion and financial performance
might be explained by differences in sample character-
istics (region, period, size) and the diversity of exclu-
sion criteria. This is supported by Plagge (2023), who
shows that the direction of the financial impact of ESG
exclusions on portfolio returns depends on both the
exclusion criteria and the region sample to which they
are applied. More recently, Porteu de la Morandiere
et al. (2024) analyzed the effects of applying some cli-
mate-related exclusion criteria on fund risks rather than
their short-term performance, arguing that the fund’s
risk profile is responsible for its long-term performance,
and should thus be a primary concern for asset owners.
Focusing on a sample of sustainable funds according to
the European Union (EU) sustainable finance disclosure
regulation (SFDR), their results suggest that excluding
climate-related controversial stocks would have a lim-
ited impact on the funds’ tracking error, sector expo-
sure or factor exposures.

Our research aims to extend the work of Porteu
de la Morandiere et al. (2024) on two levels. Firstly, we
include both conventional and sustainable instruments
with a sample of 493 indexes domiciled in Europe and
the US. Secondly, the exclusion criteria are not limited
to climate change-related activities but cover broader
ESG issues. Given the complexity of ESG criteria, we
define three exclusion screens, with increasing impacts,
that correspond to common sustainable investment

policies. The first screen, termed “consensus”, involves
consensus exclusion criteria; the second screen incor-
porates additional climate net criteria defined in the
Paris-aligned benchmarks (PAB) standards; the third
screen excludes stocks that contribute negatively to
sustainable development goals (SDG).

We find that ESG screening excludes 10-60%
of weights in 128 European indexes and 20-70%
of weights in American indexes. A naive (pro rata)
reallocation results in a median tracking error of
0.9-4.7%, with a 1.5% increase per 10% of excluded
weights. Sector deviations occur mainly in Energy and
Utilities. ESG exclusions tend to increase exposure to
the “profitability” factor while slightly reducing expo-
sure to “investment” and “value” factors, depending
on the screen and the sample region. The reallocation
method significantly impacts tracking error and factor
deviations. The optimized reallocation method lowers
median tracking error by 0.3-1.6% and reduces factor
deviations. With this approach, every 10% of excluded
weights increases tracking error by 1.1%, compared to
1.5% in naive reallocation. ESG screening followed by a
naive reallocation reduces carbon footprint (up to 54%
after the PAB screening on the US sample) while the
ESG screening followed by an optimized reallocation
has no significant impact on carbon footprint reduction.

These results suggest that reducing the investment
universe to build a sustainable index can lead to a rel-
atively low impact on its financial risk profile, which
can be further reduced with an optimized reallocation
method. However, if the strategy is to reduce its car-
bon footprint, the optimized reallocation should be
constrained to reduce risk while maintaining maximum
carbon footprint reduction.

29 Porteu de La Morandiére, A., Vaucher, B., & Bouchet, V. September 2024. Do Exclusions Have an Effect on the Risk Profile of Equity Portfolios? Scientific Portfolio Publication.
https://scientificportfolio.com/pdfs/2024-09-do-exclusions-have-an-effect-on-the-risk-profile-of-equity-portfolios.pdf.
30 Bouchet and Safaee (2024) highlight that companies may grow without relying on equity markets, challenging this mechanism.
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s L TABLE 1 ]
Exclusion as a foundation for coherent sustainable strategies
Note: This table outlines four coherent sustainable equity strategies. The “sustainable” strategy ensures portfolio alignment with companies that “do no harm” on
environmental and social issues. The “transition” strategy seeks to reform companies with negative impacts. The “solutions” strategy prioritizes investments in com-
panies addressing specific sustainability challenges. The “ethical” strategy aligns investments with personal or religious values.
Source: Bouchet and Safaee (2024).
Strategy Targeted Companies Themes Levers
Exclusion Allocation Shareholders Engagement
& Field Building
Sustainable Company behavior and All Covering all SDGs, based  Optimizing risk and return under Publication of exclusion list
activities “do no harm” on revenues, physical exclusion constraints
to any of the SDGs metrics, controversies
Transition Company behavior Specific Companies not prioritized Optimizing risk and return under Systematically engaging on issues
and activities "do for engagement exclusion and sustainability exposure  related to the specific theme chosen.
harm” to certain SDGs, + (min./max. share of “transition Publication of targets, engagement
but where change is Companies where companies”) constraints outputs, and exclusion list
possible engagement has failed
Solutions Company activities Specific  Covering all SDGs, based  Optimizing risk and return under Focusing on engagement related
contribute positively on revenues, physical exclusion and sustainability exposure to activities (strategy, investments)
to specific SDGs metrics, controversies (min. share of "positive contribution
companies”) constraints
Ethical Company behavior All Based on subjective Optimizing risk and return under -
and activities are in line preferences exclusion constraints
with ethical choices

DATA AND MODEL

We analyze 493 indexes using three ESG screens,
assessing tracking error, sector deviations, and risk fac-
tor exposure under two reallocation methods: naive
(pro-rata) and optimized. Tracking errors are evaluated
using a covariance matrix based on stock returns from
December 2018 to December 2023.

Sample of financial instruments

Our sample includes 128 developed European
indexes (208 equities in average) and 365 US indexes
(306 equities in average), selected from an initial
31 Indexes were excluded
if they had less than a year of historical data, over

sample of 517 indexes.

1% exposure to emerging markets, or incomplete
composition covering under 85% of the capital
invested.

Environmental, social, and governance screens

We define three ESG screens reflecting investor
strategies. The “Consensus” screen, based on the
policies of the 100 largest asset owners, excludes
weapons, tobacco, coal and controversies related
to the United Nations Global Compact (UNGC)
10 principles.3? The PAB screen follows EU Cli-
mate Transition and Paris-aligned Benchmarks and
excludes fossil fuels and industries misaligned with
sustainable development. The SDG screen aligns
with the UN's 17 Sustainable Development Goals
(SDGs) goals and excludes activities hinder their
achievement.

Risk metrics and sustainability indicator

We assess the impact of ESG exclusions using track-
ing error, sectors deviations, and deviations in exposure
to Fama-French (2015) risk factors, including momen-
tum. Additionally, we analyze their effect on portfolio
carbon footprint.

(

FIGURE 1
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Developed Europe

Distribution of indexes weight excluded by screen and region

Note: The red marks represent the reference index for each region: the 410 largest companies (Developed
Europe) and the 500 largest companies (US), both weighted by market capitalization.

Source: Authors’ calculation.

United States

40
35 -
30
25
20

Consensus

154
10 A

% CW Developed Europe
=== median

X

% CW United States
=== median

,_\
©
>

40
35
30
25

PAB

20 A
15 A
10 1

L IR I

b I ——

9.8

IN]
w
=)

404
354
30
254

SDG

154
10 A

X

X

N\

40 60 80 100 0
58.3

Weight excluded (%)

20

60 80
67.1
Weight excluded (%)

40 100

3T We approximate the index compositions by using those of ETFs that closely track them.
32 The ten principles are available at: https://unglobalcompact.org/what-is-gc/mission/principles.
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Distribution of indexes weight excluded by screen, region, and type

Note: The index themes are classified based on
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FIGURE 3 }

Impact of ESG exclusions on the tracking error between the screened and original index

portfolio (Naive reallocation)

Note: Tracking errors are calculated using a Ledoit and Wolf (2003) normalized sample covariance matrix.

Source: Authors’ calculation.
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Naive and optimized reallocation

We apply two methods to reallocate the weights
First,
corresponds to a pro-rata reweighting of the index

of the excluded stocks. the naive method
remaining stocks.®® This method assumes that an
investment manager sells the controversial equities and
reinvests in the remaining equities proportionally to
their initial weight.

Second, the optimized method relies on a tracking
error minimization between the original portfolio wyy
and the new portfolio w,,. The reallocation is the solu-
tion to the minimization program:

Wew = argmin,, (w —weg)T Q(w — weq)

using a Ledoit and Wolf (2003) normalized covari-
ance matrix (Q) for ex-post tracking error estimation.3*
Portfolios remain long-only with equal capital invest-
ment before and after reallocation. The strategy
reduces the impact of the ESG exclusions on the risk
of the portfolio by reinvesting in stocks with similar risk
profiles to excluded equities.

RESULTS

This section presents the impact of ESG screens
on excluded index weights, followed by their effects
on risk profiles, including tracking error, sector devi-
ation, factor exposure under naive reallocation. We
then show how optimized reallocation mitigates these
effects and examine the varying impact of ESG exclu-
sions on carbon footprint depending on the realloca-
tion method.

Excluded weight of the indexes

The impact of excluded weight varies by region
(Developed Europe, US), and ESG screen (Consen-
sus, PAB, SDG). In Developed Europe, the Consensus
and PAB screens exclude a median of 9%, while the
SDG screen excludes 58%. In the US, the Consensus
and PAB screens have twice the impact (20% median
exclusion), while the SDG has a similar effect (67%)
(Figure 1).

The impact varies by index theme (ESG, Energy,
Utilities, or other). Energy and Utilities indexes are
most affected by the Consensus and PAB screens due
to fossil fuel-related exclusions. ESG indexes are less
impacted by these screens but are not shielded from
the SDG screen, which excludes stocks beyond com-
mon ESG strategies. This suggests most ESG indexes
do not fully align with all Sustainable Development
Goals (Figure 2).

Impact of ESG exclusions on the risk profile
of indexes with naive reallocation

ESG exclusion followed by naive reallocation intro-
duces tracking error. For Developed Europe indexes,
the median tracking error is 0.9% for the Consensus
screen and 4.7% for the SDG screen. In the US, where
exclusions are higher, the impact is greater, with track-
ing error ranging from 1.5% (Consensus screen) to 4.7%
(SDG screen). Across regions and screens, tracking error
increases relatively linearly with exclusions. Each addi-
tional 10% in excluded weight raises tracking error by
about 1.5% (Figure 3).

The impact of ESG exclusions on tracking error
relative to the regional cap-weighted benchmark
is uncertain. The median increase is 0.2% for the
Consensus screen (Developed Europe and US) and up
to 2.3% for the SDG screen (Developed Europe, 1.7%
for US). Unlike tracking error relative to the initial index,
the relationship between excluded weight and tracking

33 During reallocation, the fund'’s equity portion remains constant to maintain tracking error and factor exposure consistency. If 15% of a fund’s 85% equity allocation is excluded, it is
proportionally redistributed across the remaining 70% while preserving the total equity allocation.
34 All prices are in US dollars.
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Developed Europe

Impact of ESG exclusions on sector deviations after naive reallocation

Note: The purple bars represent the distribution mean, while black bars represent the standard error of
the mean, calculated as the standard deviation divided by the square root of the sample size. This mea-
sures the dispersion of sample means around the population mean.

Source: Authors’ calculation.
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Impact of ESG exclusions on factor deviations after naive reallocation
Note: The purple bars represent the distribution mean; black bars represent the standard error, calcu-
lated as the standard deviation divided by the square root of the sample size. This measures how sample
means vary around the population mean.
Source: Authors’ calculation.
Developed Europe United States
401 % cw Developed Europe X CW United States
w 201 .
a L
c 04 x x x 1 - ¥ x * v =
o X 1 X X
] X
C — - 4
S -20
(&)
_40 - 4
_60 L T T T T T T - T T T T T T
& &« £ ¢ & N2 & &S &
S & & & & & & & &y f
& ¥ & & & N N &
© S & & o © S
Q & 0 & 0 & Q &
= 40 4 i
S
c 20 A 4
S s
B
0 m 01 X x x J B - x 0
o . X . :
s g X y s X
b} —201 X 5
g
]
= -40 -
i
—60 L T T T T T T 1 T T T T T T
Ny S N & & & So# W &
N N NG & O & 3 @ &
B & & &5 B & & 8
N} < & & N} & < 5
© o 3 © @ 3 &
Q & S & Q 0 & &
404 X 1
I
X
20 A 1 1
X
4 & X
o 0 i W 1 X
o ¥ '
(%] X U
-20 : : %
X
—40 | _
QUL — . . . . < g — . . . . .
NS & & W@ & & S & W@ & &
S &9 < F &9 & &
& X & & & e O &8
& q}‘c N & S N & 2@
¢ S N N ¢ & N N

35 Median.

error change is not significantly increasing, likely due to
the wide distribution of the initial tracking errors.

The impact of ESG exclusions on the tracking
error, relative to both the initial index and bench-
mark, can be explained by sector and factor exposure
deviations.

Sector deviations are most pronounced in Energy
and Utilities across all regions and screens, with SDG
screening also affecting the Non-Cyclical Consumer
sector. These deviations stem from fossil-fuel exclusions
and criteria related to the environment, human rights
and ethical controversies. However, deviations do not
scale linearly with excluded weight. For example, in
Developed Europe, the PAB screen excludes 10% of
weight with a 2.5% median sector deviation, while the
SDG screen excludes 60% with only a 5% deviation.
Positive sector deviations result from naive reallocation,
where sectors with higher initial weights experience the
largest increases (Figure 4).

ESG exclusions tend to increase exposure to
higher “profitability” stocks while reducing exposure
to “investment” and “value” stocks across regions
and screens. Excluded stocks are typically more
exposed to “value” and “investment” factors and less
to “profitability” than the overall index, shifting the
screened index’s factor composition (Figure 5). These
results align with Porteu de la Morandiere et al. (2024)
and are statistically significant, confirming a consistent
impact on indexes.

Impact of ESG exclusions on the risk profile
of indexes with optimized reallocation

The impact of ESG exclusions on index risk is lim-
ited for the Consensus and PAB screens under naive
reallocation, with median tracking errors of 0.9%
(Developed Europe) and 1.5% (US). However, indexes
heavily weighted in affected sectors can see tracking
errors exceed 10%, particularly under the PAB screen
(2% of Developed Europe and 3% of US indexes). The
SDG screen has a greater effect, with a median tracking
error of 4.7%.

Using the optimized reallocation method signifi-
cantly reduces the tracking error and factor deviations
but does not always mitigate sector deviations. The
ability to materially reduce factor exposure deviations
is a particularly welcome benefit of the optimized
reallocation method and aligns with Plagge (2023),
who found no significant alphas from ESG exclusions
once Fama and French (2015) factors were controlled.
Investors with fiduciary duties may favor optimized
reallocation for minimizing ESG exclusions’ impact on
long-term expected returns.

For Developed Europe indexes, optimized reallo-
cation reduces tracking error by -0.3%3> (Consensus
screen) and —1.6% (SDG screen) compared naive real-
location (-0.5% to —1.4% for US indexes, Figure 6). The
relationship between excluded weight and tracking
error also weakens: with each 10% exclusion increas-
ing tracking error by 1.2% versus 1.5% under naive
reallocation. These reductions primarily stem from
lower factor exposure deviations (Figure 7), while sector
deviations remain largely unchanged.

Impact of ESG exclusions on the carbon footprint
of indexes

Environmental exclusions tend to reduce port-
folio weighted average carbon footprint with naive
reallocation, but not necessarily with optimized
reallocation.

Naive reallocation under the Consensus and PAB
screens reduces portfolio carbon footprint reduction
consistent with their coal and fossil fuels exclusion
criteria. For Developed Europe, reductions are 22%
(Consensus) and 29% (PAB), while US reductions are

30% and 54%. These reductions are mostly explained
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Reduction in tracking error between optimized and naive reallocation

Note: Annualized tracking errors of reallocated indexes versus initial indexes, using a Ledoit and Wolf

(2003) normalized covariance matrix.
Source: Authors’ calculation.
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Reduction in factor deviation between optimized and naive reallocation

Note: Black bars represent the standard error of the mean, measuring sample mean dispersion around

the population mean.
Source: Authors’ calculation.
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by sector deviations (Energy and Utilities), which might
not be the most efficient way to decarbonize indexes
(Bouchet, 2023). For a “Transition” or “Solutions”
investment strategy, this lever of exclusion should be
supplemented by other allocation constraints designed
to guarantee a minimum of sustainable exposure
(Table 1).

The SDG screen does not significantly reduce carbon
footprints (Figure 8). While it includes climate-related
criteria like the PAB screen, its broader social and gov-
ernance exclusions also remove companies with very
low carbon intensities, leading to inconsistent impact
across indexes (Figure 8).

Optimized reallocation reduces the financial
impact of ESG exclusions but results in a smaller car-
bon footprint reduction than naive reallocation. For
example, US indexes with the Consensus screen see
a 30% carbon footprint reduction with the naive real-
location but only 22% with the optimized reallocation.
This occurs because optimized reallocation tends to
replace excluded stocks by their closest equivalent
in terms of risk profile, while the naive scheme favors
the largest capitalizations, which are in the Technology
and Financials sectors, two sectors that have much
lower carbon footprint than the benchmark average.
Thus, optimized reallocation can increase exposure
to carbon-intensive sectors. For example, 50% of the
Developed Europe indexes screened with the PAB
screen followed by an optimized reallocation are more
exposed to the Energy sector than these indexes after
a naive reallocation.

CONCLUSION

Excluding stocks of companies involved in contro-
versial activities is common in sustainable investment
strategies, but asset-owners must anticipate the finan-
cial impact of such exclusions. This article explores the
effects of ESG exclusions on financial risks.

We propose three ESG exclusion screens with
increasingly  stringent criteria:  the “Consensus”
screen based on common asset-owner criteria; the
“PAB" screen aligned with EU PAB standards; and the
“SDG" screen tied to the UN’s 17 Sustainable Devel-
opment Goals. We analyze the impact of these ESG
exclusion screens on tracking error, sector allocation,
risk factor exposure, and carbon footprint across 493
Developed Europe and US indexes. The analysis uses
two reallocation methods: a naive method based on
initial weights, and an optimized method minimizing
tracking error.

The three ESG screens result in excluded weights
ranging from 10% to 70%, varying by screen and
region. A naive reallocation yields a median tracking
error of 0.9% to 4.7%, with sector deviations mainly
in Energy and Utilities. Exclusions increase exposure
to “profitability” while slightly reducing “investment”
and “value” factors. An optimized reallocation mate-
rially reduces tracking error and factor deviations,
making it preferable for investors subject to fiduciary
responsibilities per Plagge (2023). While naive reallo-
cation systematically lowers carbon footprints, opti-
mized reallocation has no significant impact on carbon
footprint reduction.

Exclusions based on consensus or net-zero criteria
can have limited impact on financial risk, which can be
further reduced with optimized reallocation. However,
reducing carbon footprints require additional con-
straints to avoid unintended effects. Future research
could explore the impact of sustainability measures
beyond exclusions, such as reducing emissions or
financing solutions aligned with sustainable develop-
ment goals, on index risk profiles.
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Attribution Analysis of Equity Portfolio Emissions:
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Understanding the drivers influencing greenhouse gas emissions in financial portfolios is crucial for constructing and monitoring climate investment strate-
gies. Several attribution frameworks have recently emerged to identify the drivers of portfolio decarbonization. This article (a summary of a recent research
paper®) compares existing frameworks, exploring key drivers and methods to isolate their effects. Building on this review, a flexible three-step model is
formalized to integrate these drivers, and five specific models are developed to address climate-related questions. These models should help investors to
better understand portfolio emissions changes and distinguish external factors from those they can directly influence.

e Since 2022, several attribution frameworks have emerged to help investors understand changes in emissions metrics—absolute emissions, intensity,

and footprint—in financial portfolios.

e These frameworks classify the drivers into four main categories: data coverage, portfolio reallocation, economic and financial fluctuations, and com-
pany emissions. Two common attribution methods are Laspeyres indicators and the logarithmic mean Divisia index.

e The drivers are complementary and can be integrated into a flexible three-step model to assess contributions from strategic asset allocation, divestment,
sector shifts, stock selection, price volatility, emissions scopes, company activity, and inflation.

INTRODUCTION

Asset owners can help mitigate climate change by
reducing portfolio emissions. Regulatory and voluntary
frameworks that define metrics, harmonize reporting
standards, and align reduction targets with the Paris
Agreement®’ support these efforts. However, despite
progress, investors still face challenges in controlling
portfolio emissions.

Since 2022, attribution frameworks have emerged
to clarify emissions drivers (Bouchet, 2023; NZAOA,
2023; Nagy, Giese, and Wang, 2023; Simmons et al.,
2022). NZAOA (2023) highlights attribution analy-
sis as a tool for investors to take informed action via
divestment, reallocation, engagement, or challenging
asset managers. It also improves transparency in public
reporting, aligning with Science Based Targets initiative
(SBTi) recommendations SBTi (2023).

This article compares key attribution frameworks
and explores how combining them can provide greater
flexibility for investors.

The first section analyses attribution frameworks by
portfolio type, emissions metric, key drivers, and attri-
bution method. Most assess absolute emissions, emis-
sions intensity, and footprint, with changes driven by
data coverage, portfolio reallocation, economic shifts,
and company emissions. Differences arise mainly in
reallocation, with some models emphasizing invest-
ment universe changes and others sectoral shifts.

Emissions changes are attributed using either
Laspeyres price and quantity indicators (commonly
used in price index analysis) or the logarithmic mean
Divisia index (LMDI), an environmental economics
approach better suited for models with multiple drivers.

The comparative analysis finds that different frame-
works offer complementary insights. To enhance adapt-
ability, a flexible three-step model integrates these
drivers. Applied to a fictitious four-company portfolio, it
examines five climate-related questions, assessing asset
allocation, divestment, stock selection, market volatility,
emissions scopes, company activity, and inflation.

Attribution analysis helps investors distinguish
between external factors (e.g., price volatility) and
those they can influence (e.g., divestment, sector allo-
cation, stock selection). This makes it a key tool for
building and monitoring climate investment strategies.
The generalized model proposed enhances flexibility
and implementation, adapting to investors’ needs.

REVIEW OF EXISTING ATTRIBUTION
FRAMEWORKS

This section compares attribution frameworks by
Simmons et al. (2022), Bouchet (2023), Nagy, Giese,
and Wang (2023), and NZAOA (2023). These frame-
works vary in portfolio types, emissions metrics, iden-
tified drivers, and methods used to attribute changes
in emissions.

Portfolios, metrics, and type of analysis

The portfolio’s asset class determines the appro-
priate emissions metrics, varying by instrument type:
listed, debt, equity, company, project, real estate, or
sovereign. Attribution frameworks primarily focus on
equity portfolios, particularly benchmarks or indexes
(Table 1).

Existing attribution frameworks analyze three com-
plementary emissions metrics: absolute emissions, emis-
sions intensity, and emissions footprint. These cover
Scope 1 (direct emissions), Scope 2 (indirect emissions
from energy use), and Scope 3 (indirect value chain emis-
sions). Scope 3 inclusion remains debated due to scale
and methodological challenges (Ducoulombier, 2021,
2024). The second section explores how attribution anal-
ysis disentangles the contributions of each scope.

e [ TABLE 1 ] ~N

Review of existing portfolios, metrics and types of analysis

equity portfolio

N

Framework Portfolio Analyzed Metrics Type of
Analysis
Simmons et al. Equity benchmark (FTSE All-World Emissions intensity Historical
(2022) Index)
Bouchet (2023) Equity index (climate impact index) Absolute emissions Cross-sectional
Emissions intensity Historical
Nagy, Giese, and  Equity benchmark (MSCI ACWI Absolute emissions  Historical
Wang (2023) Investable Market Index) Emissions intensity
Exchange-traded fund (ETF) Emissions footprint
(US minimum-volatility ETF)
NZAOA (2023) (listed) corporates bonds and Absolute emissions Historical

Emissions intensity
Emissions footprint

J

36 Bouchet, V. (2025). Attribution Analysis of Equity Portfolio Emissions: Examining and Integrating Existing Frameworks. Scientific Portfolio Publication. https://scientificportfolio.com/
pdfs/2024-11-attribution-analysis-of-ghg-emissions-associated-with-an-equity-portfolio.pdf.
37 EU climate transition and Paris-aligned benchmarks delegated regulation, target setting protocol of the Net-Zero Asset Owner Alliance, net-zero investment framework of the Paris

Aligned Investment Initiative.
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e { TABLE 2 } p\
Drivers in existing attribution frameworks
Notes: Various frameworks use different terms for key drivers.
a) Analysis of Change in Absolute Emissions
Driver Type Driver Bouchet Nagy, Giese, and NZAOA
(2023) Wang (2023) (2023)
Data coverage Data coverage X X
Portfolio reallocation (buy/sell decisions) New positions X X
Deleted positions X X
Financing share X
Portfolio reallocation (buy/sell decisions) Sector weight
and/or financial fluctuations ) o
Instrument weight within sector
Financing value X
Portfolio AUM X
Financial and economic fluctuations Financing structure X
EVIC X X
Revenue
Financial and economic fluctuations Emissions intensity X
and/or Company emissions
Company emissions Emissions X X
b) Analysis of Change in Emissions Intensity or Footprint
Driver Type Driver Simmons Bouchet Nagy, Giese, and NZAOA
et al. (2022) (2023) Wang (2023) (2023)
Data coverage Data coverage X X
Portfolio reallocation (buy/sell decisions) New positions X X X
Deleted positions X X
Portfolio reallocation (buy/sell decisions) Sector weight
and/or financial fluctuations . L
Instrument weight within sector
Instrument weight within portfolio X X X
Financial and economic fluctuations Revenue X X X
Financial and economic fluctuations Emissions intensity X
and/or Company emissions
Company emissions Emissions X X X

Most attribution frameworks analyze portfolios over
time, crucial for assessing contributions to emissions
reduction targets. Cross-sectional analysis can sup-
plement this by comparing two portfolios at a given
moment.

Drivers that explain change in an emissions metric

The drivers in existing frameworks vary depend-
ing on whether the metric is absolute emissions or
intensity-based, but they generally fall into four cat-
egories (Table 2). The first relates to data coverage,
where emissions may change due to variations in data
availability. Methodological changes, especially for
Scope 3, also fall into this category.

The second category, portfolio
includes buy and sell decisions affecting portfolio com-

reallocation,

position. These shifts are captured through changes in

instrument weight—driven by transactions and financial
fluctuations—and the portfolio’s share of a company,
which only changes through transactions. Bouchet
(2023) further differentiates between sector allocation
and stock selection drivers.

The third category concerns economic and finan-
cial fluctuations. Variations in enterprise value, includ-
ing cash (EVIC), particularly in the equity component,
affect financial structure (equity vs. debt) and portfolio
emissions. Since these factors are largely external to
investors, isolating their effects is key to identifying
investor-driven emission reductions.

The final category relates to company emissions,
which fluctuate due to changes in emissions intensity or
revenue. However, revenue changes may not accurately
reflect production efficiency gains, warranting the inclu-
sion of an inflation driver.

Methods of attribution

Two main methods are used to attribute changes
in emissions metrics to driver: the Laspeyres and LMDI
methods. Let M, represent an emission metric at
portfolio level which can be expressed as the sum for J
instruments of a product of N variables (drivers):

MP :iMj :iD”.Dn,j ---~DN,j = ilﬁ[Dn,j
=1 =1 j=1 n=1

where M; represents the contribution of instrument j to
the portfolio metric, and D,; represents the contribu-
tion of driver n to M;.

The goal of an attribution method is to express the
change from ME to MY as an additive® decomposition
of effects E, corresponding to each driver D,,.

38 While it is less common in the existing attribution frameworks, the attribution can also be multiplicative. In this case, the change in the emissions metric is expressed as follows:

Mt1
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Nagy, Giese, and Wang (2023) and NZAOA (2023)
use a method based on Laspeyres (1871) price and
quantity indicators, commonly used to analyze changes
in price indexes. This method is analogous to decom-
position framework for a portfolio’s financial perfor-
mance (Brinson and Fachler, 1985; Brinson, Hood, and
Beebower, 1986). The case of two drivers illustrates this
method:

J
M, = Di;.Dy,
j=1

J J J
AMP :ZADU'DZ,LTO + ZADZ,j'DU,tO + ZADU-ADZJ
j=1 j=1 j=1

Ep, Ep, Iap1,a02

where Ixp, ap, is an interaction term between the two
variations AD; and AD,. One limitation of this method
is the difficulty in interpreting the interaction terms.
Simmons et al. (2022) and Bouchet (2023) rely on
Divisia index, commonly used environmental econom-
ics (Ang, Zhang and Choi, 1998). As developed in Ang

(2015), the additional effects of the driver D, is given by:

J
D, .
Eo, = D LM, M).In (_J”J

=1 Dn,j,tO

where L(M?,Mfo) = M]t-1 - th-o/ln(MJ“) - In(th-O).

Driver effects using Laspeyres are easier to interpret
by isolating their impact while holding others constant.
But it lacks symmetry — analyzing tO to t1 versus t1 to t0
yields different results. As more drivers are considered,
interaction terms increase. These can be eliminated
using the average method, but the results remain
sensitive to the order of decomposition. For example,
decomposing M; = D;.D,.Dj; differs from M; = D3.D,.D;.

LMDI eliminates interaction terms, is symmetrical,
and is not sensitive driver order, though the effects
calculated using LMDI are more complex to interpret
due to logarithms, and handling zero values requires
attention.

Laspeyres is recommended for models with two
drivers, while LMDl is preferable for models with more.

MODEL AND DATA

Attribution frameworks provide complementary
insights into portfolio emissions by analysing different
drivers. This section introduces a flexible model inte-
grating these drivers, using a fictitious portfolio as its
basis.

A flexible model to combine drivers
The model consists of three steps.

Step 1: Defining groups of financial instruments
with the portfolio

Let P represent the set of all portfolio instruments.
The first step defines disjoint subsets P within P to iso-
late contributions as drivers (e.g., divested instruments
or sectors-specific groups).

with PcUP = for all k 2 |, and K is the number of
subsets.

Step 2: Choosing drivers

The second step defines a set of N drivers whose
product equals the instrument contribution to the emis-
sions metric3? Mgt

DN .

These factors can differ depending on the subset.
In the case of absolute emissions, we might be only
interested by the absolute emissions associated with an
instrument for the subset ‘divested assets’ but by more
drivers for the other instruments.

— P . .
Moe= > MP+ Y DID2..DN,
; ; e
JE€Pbivested instruments € PRemaining instruments EP

J

Step 3: Choosing an attribution method

The third step is to choose an attribution method,
to determine the effect of any driver D,, between the
Laspeyres method (with and without interaction terms)
and the LMDI method (Table 3).

Fictitious portfolio and companies

A portfolio of four financial instruments, covering
equity and debt from four fictitious companies, is
analyzed over one period (t0 to t1). Two compa-
nies belong to a carbon-intensive (“brown"”) sector
(BS) and two to a low-carbon (“green”) sector (GS),
with one high-intensity (HI) and one low-intensity
(L) firm in each. Tables 4 and 5 detail changes
in company variables and portfolio reallocation.
Over the period, absolute emissions decrease from
19,677 tCO2e to 14,945 tCO2e, while emissions
intensity decreases from 295.0 tCO2e/MUSD to
181.2 tCO2e/MUSD.

RESULTS

This section refines the flexible model to address
key questions related to three of the four driver
categories (Table 6). Since these models often require
more than three drivers, the LMDI method is used
for attribution, though the other methods remain
applicable.
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Effects of asset class and sector allocation
on portfolio absolute emissions

To assess the impact of asset class (equity vs. debt)
and sector*® (brown vs. green), on absolute emissions
changes, an initial model applies only the first step—
defining disjoint portfolio subsets. This analysis reveals
that most reductions in the fictitious portfolio stem from
equity divestments in the brown sector (Figure 1).

Effects of divestment and reallocation
on absolute emissions

It is essential to determine whether the reduction
stems from divestment, reallocations within the brown
sector, or reductions in emissions.

A second model assesses divestment impacts and
the effects of purchases or sales, financial fluctuations
(price volatility and financial structure), and emissions of
remaining instruments.

For the fictitious portfolio, divestment accounts
for most of the absolute emissions reduction, while
reallocations and financial fluctuations have mini-
mal impact. In contrast, company emissions increase
overall (Figure 2). From an extra-financial perspective,
this model raises concerns, as company emissions
rise despite the portfolio’s emissions decline. Since
divestment drives much of the reduction, ensuring its
sustainability justification is crucial.*! If the exclusion list
is valid, the effect of legitimate divestments should be
decomposed from other divestments.*?

Effects of divestment and reallocation on emissions
intensity

If absolute emissions have risen, this may be due to
increased emissions intensity or company activity, such
as market share growth. One approach to addressing
this is by analyzing portfolio emissions intensity, which
can change due to shifts in instrument weights or com-
pany emissions intensity. Weight fluctuations result
from buy/sell decisions or price changes.

Unlike absolute emissions, portfolio and firm emis-
sions intensity is declining,*® indicating that the rise in
absolute emissions was mainly due to increased activity
(revenue) (Figure 3). The effects of other drivers align
with the absolute emissions analysis: divestment —
isolated here but potentially part of the quantity effect -
remains the primary factor, followed by a slight upward

[ [ TABLE 3

—

~

Effect calculation for three attribution methods

Notes: As discussed earlier, for D, (the financial weight driver), the initial portfolio emissions metric
(intensity or footprint) can be subtracted, regardless of the method used.

Method

Formula for Ep_

Laspeyres with interaction terms

Ep, = AD,.] [Pio

k#n
Laspeyres without interaction terms N et
Ep, = ADH.HD,( .l_IDk
k=n+1 k=1

Logarithm mean Divisia index (LMDI)

N\

J 1_ppto
Eo,= Y. M M) o[ Boie
" = In(M{") ~In(M£°) Dy 0

3% Absolute emissions, emissions intensity, or emissions footprint.
40 We use a simplified binary classification here, though climate-specific classifications can be applied.
41 Either due to the company’s involvement in controversial activities or an unsuccessful engagement campaign.

42 |n this case, the ‘divestment’ effect will be decomposed as: z;

EP =%, EP 43, EP.

€Poivested instruments € Poivested instruments inlist — | J€Pbivested instruments not in list —

43 This results from BS-LI maintaining a constant intensity, while GS-HI and GS-LI show decreasing intensities.
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Changes in company variables
Notation: E1 = direction emissions (Scope 1), E2 = direct emissions from electricity (Scope 2), P = physical production (tons), R = revenue, QF = quantity of equity
instruments, PE = equity price, QD = debt quantity, PD = debt price, EVIC = enterprise value including cash. Scenario: BS-LI’s direct emissions double (100%) (a) while
revenue rises 50% (c). Indirect emissions from electricity fall 50% (b). Equity prices increase 20-50% (d), raising EVIC. GS-LI's EVIC also rises due to debt issuance (e).

M

TABLE 4

N——

Company (i) Sector Unit BS-HI BS-LI GS-HI GS-LI
i € Sprown i € Sprown i € Sgreen i € Sgreen
Emissions and Eliw (tCOse) 75,000,000 25,000,000 15,000,000 5,000,000
economic activity Elin (tCOse) - 50,000,000 (a) - -
E2; (tCOye) 25,000,000 12,500,000 5,000,000 2,500,000
E2; (tCO,e) 12,500,000 (b) 6,250,000 (b) 2,500,000 (b) 1,250,000 (b)
P.ro t 100 100 100 100
Pi1 t - - - -
Ri 0 (MUSD) 100,000 100,000 100,000 100,000
Ris (MUSD) - 150,000 (c) - -
Financing structure QE; o 100,000,000 100,000,000 100,000,000 100,000,000
QE; 4 - - - -
PE; 1o (USD) 1,000 1,000 1,000 1,000
PE; 11 (USD) 1,200 (d) 1,300 (d) 1,300 (d) 1,500 (d)
QD,; - 50,000,000 50,000,000 50,000,000 50,000,000
QD - - - - 100,000,000
PD; 1,000 1,000 1,000 1,000
PD; o - - - -
EVIC; (MUSD) 150,000 150,000 150,000 150,000
EVIC; 1 (MUSD) 170,000 180,000 180,000 250,000 (e)
{ TABLE 5 ]

Changes in a multi-asset portfolio
Notation: N = instrument quantity, PI = price per instrument, w = financial weight in portfolio, w, = sector weight, w;; = instrument’s financial weight in sector

(w;s = w/wy). Scenario: The portfolio manager fully divests from BS-HI, reduces BS-LI exposure, and reallocates to GS-HI debt instruments.

Instrument Unit BS-HI BS-LI GS-HI GS-LI
Type of instrument Equity Equity Debt Debt
N;o 10,000 30,000 30,000 30,000
N; 0.0 19,384 63,000 25,200
Pl;+ usb 1,000 1,000 1,000 1,000
Pl; 41 usb 1,200 1,300 - 1,500
w0 % 10.0% 30.0% 30.0% 30.0%
wj, % 0.0% 20.0% 50.0% 30.0%
Wili(j), 10 % 40.0% 40.0% 60.0% 60.0%
Wiy, t1 % 20.0% 20.0% 80.0% 80.0%
Wig(i(j),t0 % 25.0% 75.0% 50.0% 50.0%
% 0.0% 100.0% 62.5% 37.5%

Wis(i(j), t1
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help reduce intensity.

Effects of sector allocation and stock selection
on emissions intensity

The initial absolute emissions model identified sec-
tor contributions but did not clarify whether reductions

reallocations. This fourth model separates sector alloca-
tion from stock selection while isolating the divestment
effect, focusing only on remaining instruments*
(Figure 4a). In a context of significant price fluctuations,
adjustments further distinguish the effects of quantity
and price changes on these weights (Figure 4b).

TABLE 6
4 I
Climate-related questions and specific model associated
Question Specific Model
What is the contribution of each asset class and each climate-sensitive sector? b b b b
Eo= > EP+ > EP+ Y EP+ > E
j E'PEquny & Brown J EPEqmry & Green JEPbebt & Brown JE€Pbebt & Green
What is the contribution of divestment and reallocation in this reduction? 1
E,= EP + N; . Pli——— .Ey
P J ) PEVIC;, M
JEPoivested instruments jeﬂ?emarnrng instruments buy/sell i
Financial fluctuations
El, = EIP N PI ! El
p= z it Z i My cFha)
. . =
JE€Pbivested instruments J€Fremaining instruments buy/sell P
Price fluctuations
What is the contribution of sector allocation and stock selection? b
El, = Z Elf + Z WRI-Ws(i(j).Ri - Wisti(n Ri- Elij)
J€Pbivested instruments j EPRemarnrng instruments (RI)
What is the contribution of sector inflation and emissions scopes?
P Prodiy [ Ely . E2g)
Elp =Y Wj. : +
- Rijy \ Prody; ~ Prody
—_—
Inflation
where Prodjj is the physical production (expressed in tonnes in
our example) of the company, E1j; the company emissions on
cope 1, an i on Scope 2.
Ve { FIGURE 1 ] N
Attribution of change in absolute emissions by asset class and sector
Notes: Analysis of a fictitious portfolio using LMDL
20,000 19,667
15,000 2,125 14,945
-6,292 0
-555
5}
N
g 10,000
5,000
0 - — — T
Asset emissions Asset emissions Asset emissions Asset emissions
Portfolio t0 Equity - Brown sector|Equity - Green sector| Debt - Brown sector | Debt - Green sector Portfolio t1
impact from buy/sell decisions, while price fluctuations  resulted from decreased sector exposure or intra-sector Even after accounting for divestment, the

portfolio’s intensity reduction is mainly driven by
sector allocation, shifting from brown to green
sectors. However, stock selection within sectors
increases intensity, as GS-HI's weight rises relative to
GS-LI. From a climate impact perspective, sector allo-

cation may artificially reduce emissions by lowering

44 A driver capturing the weight change of remaining instruments relative to divested ones is introduced, isolating sector allocation and stock selection effects for retained stocks. Without
this, BS-LI’s sector allocation effect would be skewed by BS-Hl's exclusion.
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{ FIGURE 2 ]

Attribution of change in absolute emissions by divestment, reallocation, financial fluctuations, and company emissions
Notes: Analysis of a fictitious portfolio using the LMDI method.
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{ FIGURE 3 ]

Attribution of change in intensity per revenue by divestment, allocation, price fluctuations, and company intensity
Notes: Analysis of a fictitious portfolio using LMDL.
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exposure to high-emission sectors and should not be
prioritized.*

Effects of company emissions and inflation
on emissions intensity

The first two models showed rising company
emissions, with the third linking this to revenue
growth, while emissions intensity declined slightly.

However, monetary intensity is inflation sensitive.
Adjusting for inflation clarifies whether intensity
changes stem from production efficiency or inflation
effects.*® Specific drivers are also introduced for each
emissions scope.

This finds
reduced emissions intensity (per revenue), while
physical intensity (e.g., CO, per ton of steel) rose.

last model inflation  significantly

The decline in physical intensity is mainly from
Scope 2 emissions, whereas Scope 1 emissions
increased (Figure 5). Since companies cannot con-
trol the local electricity mix, they have more leverage
over Scope 1 emissions tied to operations. Differen-
tiating production efficiency, inflation, and emissions
scopes helps portfolio managers refine engagement
strategies.

45 The IIGCC (2023) recommends that net-zero benchmarks prioritise real-world ‘organic’ decarbonisation over ‘paper’ decarbonisation and supports a sectoral approach.
46 In our example, we use individual company production data. When unavailable, company revenues can be adjusted using a sectoral inflation factor.
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Ve { FIGURE 4 ] N
Attribution of change in intensity per revenue by divestment, sector allocation, stock selection, and company intensity
Notes: Analysis of a fictitious portfolio using LMDL
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Reconciling the absolute emissions, intensity E - P Company emissions can be expressed as the prod-
P~ J

and footprint emissions metrics

The attribution models have been used to analyze
different portfolio emissions, demonstrating the flex-
ibility of the generalization approach. Depending on
the context, certain metrics may be more relevant
than others. A key advantage of attribution analysis is
its ability to explicitly link these metrics. Specifically,
absolute portfolio emissions can be expressed in
terms of intensity and footprint metrics. As presented
before:

- —
] Absolute emissions (associated with instrument j)

Absolute emissions for each instrument can be cal-
culated as the product of the portfolio value and the
carbon footprint of the associated company.

Eij
E, = Voow; —2—
P Z PTEVIC)
J | ——
Footprint

Absolute emissions

uct of the company’s emissions intensity and revenue.

Eigj 1
Ep= > Vo L Ry —o—
- Ritj EVICy;
J —_
Intensity
Footprint

Absolute emissions

Using this model, all drivers influencing absolute emis-
sions, emissions intensity, and footprint become visible,
allowing for a unified analysis of each metric's evolution.
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{ FIGURE 5 ]

Attribution of change in intensity by allocation, inflation, and scope
Notes: Analysis of a fictitious portfolio using LMDL
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Adjusting the portfolio’s emissions footprint for
EVIC inflation alters the EVIC driver’s attribution results
but leaves the effects of key investor-driven factors
unchanged. Applying an inflation adjustment to the
emissions footprint or using a model with an EVIC
driver accounts for financial instrument price inflation,
but combining both methods adds no further value.

CONCLUSION

Since 2022, several attribution frameworks have
emerged to clarify the emissions drivers in financial
portfolios. This article examines their key differences
and explores how they can be effectively combined.

Most frameworks focus on historical analysis of
absolute emissions, emissions intensity, and equity
portfolio emissions. Their identified drivers fall into
four categories: data coverage, portfolio reallocation,
economic and financial fluctuations, and company
emissions.

Two methods attribute changes in emissions met-
rics: the Laspeyres indicators and the logarithmic mean
Divisia index (LMDI) Laspeyres is preferred for two-
driver models, while LMDI is better for multiple drivers,
as it eliminates interaction terms.

The drivers in these frameworks complement
each other rather than serve as substitutes. A flexible

three-step model integrates them, allowing investors to
assess the impact of asset class allocation, divestment,
sector allocation, stock selection, price volatility, emis-
sions scopes, company activity, and inflation on portfo-
lio emissions metrics.

By integrating drivers from existing frameworks,
investors can better identify emissions changes, distin-
guishing between exogenous factors and those they
can influence, either directly (e.g., allocation, divest-
ment, stock selection) or indirectly (e.g., corporate
emissions through engagement). Attribution analysis is
thus critical for constructing and monitoring a climate
investment strategy.
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